To read this content please select one of the options below:

MCDM towards knowledge incorporation in ANN models for phase transformation in continuous cooling of steel

Subhamita Chakraborty (Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India)
Prasun Das (Quality Reliability and Operation Research, Indian Statistical Institute, Kolkata, India)
Naveen Kumar Kaveti (Quality Reliability and Operation Research, Indian Statistical Institute, Kolkata, India)
Partha Protim Chattopadhyay (Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India)
Shubhabrata Datta (Department of Mechanical Engineering, SRM Institute of Science and Technology, Kancheepuram, India)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 18 October 2018

Issue publication date: 7 January 2019

127

Abstract

Purpose

The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of steel, so that the model predictions become valid from materials engineering point of view.

Design/methodology/approach

Genetic algorithm (GA) is used in different ways for incorporating system knowledge during training the ANN. In case of training, the ANN in multi-objective optimization mode, with prediction error minimization as one objective and the system knowledge incorporation as the other, the generated Pareto solutions are different ANN models with better performance in at least one objective. To choose a single model for the prediction of steel transformation, different multi-criteria decision-making (MCDM) concepts are employed. To avoid the problem of choosing a single model from the non-dominated Pareto solutions, the training scheme also converted into a single objective optimization problem.

Findings

The prediction results of the models trained in multi and single objective optimization schemes are compared. It is seen that though conversion of the problem to a single objective optimization problem reduces the complexity, the models trained using multi-objective optimization are found to be better for predicting metallurgically justifiable result.

Originality/value

ANN is being used extensively in the complex materials systems like steel. Several works have been done to develop ANN models for the prediction of CCT diagram. But the present work proposes some methods to overcome the inherent problem of data-driven model, and make the prediction viable from the system knowledge.

Keywords

Acknowledgements

Conflict of Interests: the authors declare that there is no conflict of interests regarding the publication of this paper. Subhamita Chakraborty acknowledges financial assistance of CSIR (Council of Scientific and Industrial Research), India (File No. 8/03(0081)/2011-EMR-I).

Citation

Chakraborty, S., Das, P., Kaveti, N.K., Chattopadhyay, P.P. and Datta, S. (2019), "MCDM towards knowledge incorporation in ANN models for phase transformation in continuous cooling of steel", Multidiscipline Modeling in Materials and Structures, Vol. 15 No. 1, pp. 170-186. https://doi.org/10.1108/MMMS-01-2018-0002

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles