Search results

1 – 10 of 724
To view the access options for this content please click here
Article
Publication date: 17 April 2007

Wei‐Jaw Deng, Chung‐Ching Chiu and Chih‐Hung Tsai

Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the…

Abstract

Failure mode and effects analysis (FMEA) is a preventive technique in reliability management field. The successful implementation of FMEA technique can avoid or reduce the probability of system failure and achieve good product quality. The FMEA technique had applied in vest scopes which include aerospace, automatic, electronic, mechanic and service industry. The marking process is one of the back ends testing process that is the final process in semiconductor process. The marking process failure can cause bad final product quality and return although is not a primary process. So, how to improve the quality of marking process is one of important production job for semiconductor testing factory. This research firstly implements FMEA technique in laser marking process improvement on semiconductor testing factory and finds out which subsystem has priority failure risk. Secondly, a CCD position solution for priority failure risk subsystem is provided and evaluated. According analysis result, FMEA and CCD position implementation solution for laser marking process improvement can increase yield rate and reduce production cost. Implementation method of this research can provide semiconductor testing factory for reference in laser marking process improvement.

Details

Asian Journal on Quality, vol. 8 no. 1
Type: Research Article
ISSN: 1598-2688

Keywords

To view the access options for this content please click here
Article
Publication date: 2 September 2019

Fatemeh Shaker, Arash Shahin and Saeed Jahanyan

The purpose of this paper is to propose an integrative approach for improving failure modes and effects analysis (FMEA).

Abstract

Purpose

The purpose of this paper is to propose an integrative approach for improving failure modes and effects analysis (FMEA).

Design/methodology/approach

An extensive literature review on FMEA has been performed. Then, an integrative approach has been proposed based on literature review. The proposed approach is an integration of FMEA and quality function deployment (QFD). The proposed approach includes a two-phase QFD. In the first phase, failure modes are prioritized based on failure effects and in the second phase, failure causes are prioritized based on failure modes. The proposed approach has been examined in a case example at the blast furnace operation of a steel-manufacturing company.

Findings

Results of the case example indicated that stove shell crack in hot blast blower, pump failure in cooling water supply pump and bleeder valves failed to operate are the first three important failure modes. In addition, fire and explosion are the most important failure effects. Also, improper maintenance, over pressure and excess temperature are the most important failure causes. Findings also indicated that the proposed approach with the consideration of interrelationships among failure effects, failure mode and failure causes can influence and adjust risk priority number (RPN) in FMEA.

Research limitations/implications

As manufacturing departments are mostly dealing with failure effects and modes of machinery and maintenance departments are mostly dealing with causes of failures, the proposed model can support better coordination and integration between the two departments. Such support seems to be more important in firms with continuous production lines wherein line interruption influences response to customers more seriously. A wide range of future study opportunities indicates the attractiveness and contribution of the subject to the knowledge of FMEA.

Originality/value

Although the literature indicates that in most of studies the outcomes of QFD were entered into FMEA and in some studies the RPN of FMEA was entered into QFD as importance rating, the proposed approach is a true type of the so-called “integration of FMEA and QFD” because the three main elements of FMEA formed the structure of QFD. In other words, the proposed approach can be considered as an innovation in the FMEA structure, not as a data provider prior to it or a data receiver after it.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

To view the access options for this content please click here
Article
Publication date: 3 August 2015

Hu-Chen Liu, Jian-Xin You, Xue-Feng Ding and Qiang Su

– The purpose of this paper is to develop a new failure mode and effect analysis (FMEA) framework for evaluation, prioritization and improvement of failure modes.

Abstract

Purpose

The purpose of this paper is to develop a new failure mode and effect analysis (FMEA) framework for evaluation, prioritization and improvement of failure modes.

Design/methodology/approach

A hybrid multiple criteria decision-making method combining VIKOR, decision-making trial and evaluation laboratory (DEMATEL) and analytic hierarchy process (AHP) is used to rank the risk of the failure modes identified in FMEA. The modified VIKOR method is employed to determine the effects of failure modes on together. Then the DEMATEL technique is used to construct the influential relation map among the failure modes and causes of failures. Finally, the AHP approach based on the DEMATEL is utilized to obtain the influential weights and give the prioritization levels for the failure modes.

Findings

A case study of diesel engine’s turbocharger system is provided to illustrate the potential application and benefits of the proposed FMEA approach. Results show that the new risk priority model can be effective in helping analysts find the high risky failure modes and create suitable maintenance strategies.

Practical implications

The proposed FMEA can overcome the shortcomings and improve the effectiveness of the traditional FMEA. Particularly, the dependence and interactions between different failure modes and effects have been addressed by the new failure analysis method.

Originality/value

This paper presents a systemic analytical model for FMEA. It is able to capture the complex interrelationships among various failure modes and effects and provide guidance to analysts by setting the suitable maintenance strategies to improve the safety and reliability of complex systems.

Details

International Journal of Quality & Reliability Management, vol. 32 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 1991

J.R. Aldridge, J. Taylor and B.G. Dale

Research carried out to develop and advance the application of design and process failure mode and effects analysis (FMEA) at Garrett Automotive Ltd, Skelmersdale, is…

Abstract

Research carried out to develop and advance the application of design and process failure mode and effects analysis (FMEA) at Garrett Automotive Ltd, Skelmersdale, is described. The work has been undertaken under the umbrella of the UMIST Total Quality Management Multi‐company Teaching Programme. From an analysis of the present methods of preparing and using FMEAs, procedural changes have been made which have resulted in more effective use of the technique. The findings include the reluctance of product engineering and manufacturing engineering personnel to take a leading role in the preparation of design and process FMEAs, respectively. The main reasons for this relate to a perceived lack of time or lack of understanding of the technique′s potential. It is also pointed out that, in the past, FMEAs have mainly been used to satisfy the demands of major customers and it takes some considerable effort to ensure that FMEAs are prepared and used in the correct manner.

Details

International Journal of Quality & Reliability Management, vol. 8 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 1996

Sheng‐Hsien (Gary) Teng and Shin‐Yann (Michael) Ho

Discusses the implementation of failure mode and effects analysis (FMEA) for both product design and process control. FMEA is implemented in two ways to ensure that the…

Abstract

Discusses the implementation of failure mode and effects analysis (FMEA) for both product design and process control. FMEA is implemented in two ways to ensure that the reliability requirements are met for the production of an airbag inflator. Design FMEA is performed to generate a process control plan, visual aids, and a process verification list. Design FMEA and process FMEA are integrated through reliability prediction and supplier PPM reports. The supplier PPM reports contain the information that can be employed to update the probabilities used in design FMEA. The results of reliability predictions are fed back to eliminate the design weakness. Demonstrates the integrated procedure of the FMEA approach and discusses the relationships among useful tools.

Details

International Journal of Quality & Reliability Management, vol. 13 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

To view the access options for this content please click here
Article
Publication date: 17 August 2012

S. Vinodh, S. Aravindraj, Ravi Sathya Narayanan and N. Yogeshwaran

The purpose of this paper is to report a research in which fuzzy assessment of failure mode and effect analysis (FMEA) was examined on the design of rotary switches.

Abstract

Purpose

The purpose of this paper is to report a research in which fuzzy assessment of failure mode and effect analysis (FMEA) was examined on the design of rotary switches.

Design/methodology/approach

In the case study reported in this paper, fuzzy FMEA of a rotary switch was analysed, starting from its individual components to subsystems. Failure modes were identified and the effect of these modes was studied, then the results before and after taking actions were compared.

Findings

The usage of fuzzy FMEA enabled the reflection of real situation for determining the interdependencies among failure modes and effects of rotary switches with the incorporation of knowledge and expertise of experts.

Research limitations/implications

The assessment has been attempted on a single rotary switch assembly. In future, this method can be applied in complex systems.

Practical implications

The paper shows that the method enabled the decision makers to share information from various working groups.

Originality/value

The case study has been conducted in a rotary switches manufacturing organisation and the results before and after improvement have been compared.

To view the access options for this content please click here
Article
Publication date: 29 November 2018

Sachin Kumar Mangla, Sunil Luthra and Suresh Jakhar

The purpose of this paper is to facilitate green supply chain (GSC) managers and planners to model and access GSC risks and probable failures. This paper proposes to use…

Abstract

Purpose

The purpose of this paper is to facilitate green supply chain (GSC) managers and planners to model and access GSC risks and probable failures. This paper proposes to use the fuzzy failure mode and effects analysis (FMEA) approach for assessing the risks associated with GSC for benchmarking the performance in terms of effective GSC management adoption and sustainable production.

Design/methodology/approach

Initially, different failure modes are defined using FMEA analysis, and in order to decide the risk priority, the risk priority number (RPN) is determined. Such priority numbers are typically acquired from the judgment decisions of experts that could contain the element of vagueness and imperfection due to human biases, and it may lead to inaccuracy in the process of risk assessment in GSC. In this study, fuzzy logic is applied to conventional FMEA to overcome the issues in assigning RPNs. A plastic manufacturer GSC case exemplar of the proposed model is illustrated to present the authenticity of this method of risk assessment.

Findings

Results indicate that the failure modes, given as improper green operating procedure, i.e. process, operations, etc. (R6), and green issues while closing the loop of GSC (R14) hold the highest RPN and FRPN scores in classical as well as fuzzy FMEA analysis.

Originality/value

The present research work attempts to propose an evaluation framework for risk assessment in GSC. This paper explores both sustainable developments and risks related to efficient management of GSC initiatives in a plastic industry supply chain context. From a managerial perspective, suggestions are also provided with respect to each failure mode.

Details

Benchmarking: An International Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

To view the access options for this content please click here
Article
Publication date: 16 October 2007

Chensong Dong

This paper aims to provide a cost effective failure mode and effects analysis tool to overcome the disadvantages of the traditional FMEA that the cost due to failure is…

Abstract

Purpose

This paper aims to provide a cost effective failure mode and effects analysis tool to overcome the disadvantages of the traditional FMEA that the cost due to failure is not defined.

Design/methodology/approach

The method presented in this paper is based on the fuzzy utility theory. It uses utility theory and fuzzy membership functions for the assessment of severity, occurrence, and detection. The utility theory accounts for the nonlinear relationship between the cost due to failure and the ordinal ranking. The application of fuzzy membership functions better represents the team opinions. The Risk Priority Index (RPI) is developed for the prioritization of failure modes.

Findings

The advantages of the FUT‐based FMEA are demonstrated through cases studies. It shows that it can take the cost due to failure into account when prioritizing failure modes.

Originality/value

The FUT‐based FMEA presented in this paper provides a convenient cost‐effective tool for failure analysis. It improves the performance FMEA in the risk and failure analysis for product design and manufacturing/assembly process.

Details

International Journal of Quality & Reliability Management, vol. 24 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2018

Alessandro Brun and Matteo Mario Savino

Failure mode and effect analysis (FMEA) is an analysis technique for identifying and eliminating known and/or potential failures and problems from products, processes or…

Abstract

Purpose

Failure mode and effect analysis (FMEA) is an analysis technique for identifying and eliminating known and/or potential failures and problems from products, processes or systems. Notwithstanding its diffusion, traditional FMEA has several limitations. Lately, scientific research has been focused on improving said limitations, yet the process is still ongoing. The purpose of this paper is to support developments in this area.

Design/methodology/approach

The paper improves the conventional FMEA by using the method of pairwise comparison to establish the relative importance of the input factors in risk priority number calculation, and Markov chains to calculate risk distributions in the long term.

Findings

The functioning and usefulness of the proposed methodology is demonstrated through an application to the construction industry, one of the world’s biggest industrial sectors, dogged by a high rate of work-related injuries and casualties.

Originality/value

Having demonstrated the applicability of the novel methodology to a real domain, the paper contributes to the process of overcoming traditional FMEA limitations.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

To view the access options for this content please click here
Article
Publication date: 15 July 2020

Seyyed Habibollah Mirghafoori, Hossein Sayyadi Tooranloo and Sepideh Saghafi

In this way, the aim of this study is to expand and evelop the application of this technique in FMEA to rank failure modes of ESQ of academic libraries in an…

Abstract

Purpose

In this way, the aim of this study is to expand and evelop the application of this technique in FMEA to rank failure modes of ESQ of academic libraries in an intuitionistic fuzzy environment. Assessment of electronic service quality (ESQ) of libraries is significantly important according to their major roles. It should be noted that the ESQ has a significant impact on customer satisfaction, which improves organizational performance. Accordingly, low ESQ means waste of organizational resources and poor user satisfaction. So, there is a dire need to reflect reasons inducing failure modes in academic library ESQ. Thus, investigation of failure modes affecting academic library ESQ is highly important. One solution in this area is utilization of the intuitionistic fuzzy (IF) failure mode and effects analysis (FMEA) as one of the widely used methods for prediction and identification of failure modes.

Design/methodology/approach

The present study in terms of objective is applied and in terms of the type of method is descriptive-analytical. The research sample included four experts of Yazd academic Libraries (Iran). To collect data, three types of questionnaires were distributed among experts. The purpose of the first questionnaire was to identify and reach an agreement on e-library failure modes. Type II questionnaire was used to determine the importance of identified risk factors and Type III questionnaire was used to prioritize the factors.

Findings

Results indicate that the difficulty of using websites, lack of provided information feedback to users and lack of links on the website to users' are the main priorities for improving ESQ in the studied academic libraries.

Originality/value

In this approach, the Intuitionistic fuzzy Elimination Et Choix Traduisant la REalité and technique for order of preference by similarity to ideal solution method were used to rank failure modes in academic library ESQ within the FMEA framework.]

1 – 10 of 724