Search results

1 – 10 of 57
Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 February 2024

Kai Deng, Liang Zhang, Chen Chen, Xiao Lu, Lei Sun and Xing-Yu Guo

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for…

Abstract

Purpose

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for the electronic packaging industry.

Design/methodology/approach

In this paper, Sn58Bi-xSi3N4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0 Wt.%) was prepared for bonding Cu substrate, and the changes in thermal properties, wettability, microstructure, interfacial intermetallic compound and mechanical properties of the composite solder were systematically studied.

Findings

The experiment results demonstrate that including Si3N4 nanoparticles does not significantly impact the melting point of Sn58Bi solder, and the undercooling degree of solder only fluctuates slightly. The molten solder spreading area reached a maximum of 96.17 mm2, raised by 19.41% relative to those without Si3N4, and the wetting angle was the smallest at 0.6 Wt.% of Si3N4, with a minimum value of 8.35°. When the Si3N4 nanoparticles reach 0.6 Wt.%, the solder joint microstructure is significantly refined. Appropriately adding Si3N4 nanoparticles will slightly increase the solder alloy hardness. When the concentration of Si3N4 reaches 0.6 Wt.%, the joints shear strength reached 45.30 MPa, representing a 49.85% increase compared to those without additives. A thorough examination indicates that legitimately incorporating Si3N4 nanoparticles into Sn58Bi solder can enhance its synthetical performance, and 0.6 Wt.% is the best addition amount in our test setting.

Originality/value

In this paper, Si3N4 nanoparticles were incorporated into Sn58Bi solder, and the effects of different contents of Si3N4 nanoparticles on Sn58Bi solder were investigated from various aspects.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 April 2024

Fang Liu, Zilong Wang, JiaCheng Zhou, Yuqin Wu and Zhen Wang

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects…

Abstract

Purpose

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects of 0.5%Sb and 0.07%Ce doping on microstructure, thermal properties and mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder were investigated.

Design/methodology/approach

According to the mass ratio, the solder alloys were prepared from tin ingot, antimony ingot, silver ingot and copper ingot with purity of 99.99% at 400°C. X-ray diffractometer was adopted for phase analysis of the alloys. Optical microscopy, scanning electron microscopy and energy dispersive spectrometer were used to study the effect of the Sb and Ce doping on the microstructure of the solder. Then, the thermal characteristics of alloys were characterized by a differential scanning calorimeter (DSC). Finally, the ultimate tensile strength (UTS), elongation (EL.%) and yield strength (YS) of solder alloys were measured by tensile testing machine.

Findings

With the addition of Sb and Ce, the ß-Sn and intermetallic compounds of solders were refined and distributed more evenly. With the addition of Sb, the UTS, EL.% and YS of Sn-1.0Ag-0.5Cu increased by 15.3%, 46.8% and 16.5%, respectively. The EL.% of Sn-1.0Ag-0.5Cu increased by 56.5% due to Ce doping. When both Sb and Ce elements are added, the EL.% of Sn-1.0Ag-0.5Cu increased by 93.3%.

Originality/value

The addition of 0.5% Sb and 0.07% Ce can obtain better comprehensive performance, which provides a helpful reference for the development of Sn-Ag-Cu lead-free solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 October 2022

Reza Amini and Pooneh Kardar

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the…

Abstract

Purpose

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the passage of several factors.

Design/methodology/approach

In this research, in the phosphate bath, immersion time, temperature and the content of sodium nitrite as an accelerator were changed.

Findings

As a result, increasing the immersion time of AZ31 Mg alloy samples in the phosphating bath as well as increasing the ratio of sodium dodecyl sulfate (SDS) concentration to sodium nitrite concentration in the phosphating bath formulation increase the mass of phosphating formed per unit area of the Mg alloy. The results of the scanning electron microscope test showed phosphating is not completely formed in short immersion times, which is a thin and uneven layer.

Research limitations/implications

Mg and its alloys are sensitive to galvanic corrosion, which would lead to generating several holes in the metal. As such, it causes a decrease in mechanical stability as well as an unfavorable appearance.

Practical implications

Mg is used in several industries such as automobile and computer parts, mobile phones, astronaut compounds, sports goods and home appliances.

Social implications

Nevertheless, Mg has high chemical reactivity, so an oxide-hydroxide layer is formed on its surface, which has a harmful effect on the adhesion and uniformity of the coating applied on Mg.

Originality/value

By increasing the ratio of SDS concentration to sodium nitrite concentration in the phosphating bath, the corrosion resistance of the phosphating increases.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 January 2024

Mohammad A Gharaibeh, Markus Feisst and Jürgen Wilde

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Abstract

Purpose

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Design/methodology/approach

The AgSn TLP test samples are manufactured using pre-defined optimized TLP bonding process parameters. Consequently, tensile and creep tests are conducted at various loading temperatures to generate stress–strain and creep data to accurately determine the elastic properties and two sets of Anand model creep coefficients. The resultant tensile- and creep-based constitutive models are subsequently used in extensive finite element simulations to precisely survey the mechanical response of the AgSn TLP bonds in power electronics due to different thermal loads.

Findings

The response of both models is thoroughly addressed in terms of stress–strain relationships, inelastic strain energy densities and equivalent plastic strains. The simulation results revealed that the testing conditions and parameters can significantly influence the values of the fitted Anand coefficients and consequently affect the resultant FEA-computed mechanical response of the TLP bonds. Therefore, this paper suggests that extreme care has to be taken when planning experiments for the estimation of creep parameters of the AgSn TLP joints.

Originality/value

In literature, there is no constitutive modeling data on the AgSn TLP bonds.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 July 2023

Yupeng Mou and Xiangxue Meng

With the upgrade of natural language interaction technology, the simulation extension of intelligent voice assistants (IVAs) and the uncertainty of products and services have…

Abstract

Purpose

With the upgrade of natural language interaction technology, the simulation extension of intelligent voice assistants (IVAs) and the uncertainty of products and services have received more and more attention. However, most of the existing research focuses on investigating the application of theories to explain consumer behavior related to intention to use and adopt IVAs, while ignoring the impact of its privacy issues on consumer resistance. This article especially examines the negative impact of artificial intelligence-based IVAs’ privacy concerns on consumer resistance, and studies the mediating effect of perceived creepiness in the context of privacy cynicism and privacy paradox and the moderating effect of anthropomorphized roles of IVAs and perceived corporate social responsibility (CSR) of IVAs’ companies. The demographic variables are also included.

Design/methodology/approach

Based on the theory of human–computer interaction (HCI), this study addresses the consumer privacy concerns of IVAs, builds a model of the influence mechanism on consumer resistance, and then verifies the mediating effect of perceived creepiness and the moderating effect of anthropomorphized roles of IVAs and perceived CSR of IVAs companies. This research explores underlying mechanism with three experiments.

Findings

It turns out that consumers’ privacy concerns are related to their resistance to IVAs through perceived creepiness. The servant (vs. partner) anthropomorphized role of IVAs is likely to induce more privacy concerns and in turn higher resistance. At the same time, when the company’s CSR is perceived high, the impact of the concerns of IVAs’ privacy issues on consumer resistance will be weakened, and the intermediary mechanism of perceiving creepiness in HCI and anthropomorphism of new technology are further explained and verified. The differences between different age and gender are also revealed in the study.

Originality/value

The research conclusions have strategic reference significance for enterprises to build the design framework of IVAs and formulate the response strategy of IVAs’ privacy concerns. And it offers implications for researchers and closes the research gap of IVAs from the perspective of innovation resistance.

Article
Publication date: 30 April 2024

Shuang Huang, Haitao Zhang and Tengjiang Yu

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the…

Abstract

Purpose

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the correlation between macro rheological indexes and micro infrared spectroscopy indexes.

Design/methodology/approach

First, a dynamic shear rheometer and a bending beam rheometer were used to obtain the evaluation indexes of high- and low-temperature rheological characteristics for asphalt (virgin, SBS/styrene butadiene rubber [SBR], SBS/rubber and SBR/rubber) respectively, and its variation rules were analyzed. Subsequently, the infrared spectroscopy test was used to obtain the micro rheological characteristics of asphalt, which were qualitatively and quantitatively analyzed, and its variation rules were analyzed. Finally, with the help of GRA, the macro-micro evaluation indexes were correlated, and the improvement efficiency of composite modifiers on asphalt was explored from rheological characteristics.

Findings

It was found that the deformation resistance and aging resistance of SBS/rubber composite modified asphalt are relatively good, and the modification effect of composite modifier and virgin asphalt is realized through physical combination, and the rheological characteristics change with the accumulation of functional groups. The correlation between macro rutting factor and micro functional group index is high, and the relationship between macro Burgers model parameters and micro functional group index is also close.

Originality/value

Results reveal the basic principle of inherent-improved synergistic effect for composite modifiers on asphalt and provide a theoretical basis for improving the composite modified asphalt.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting…

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 57