Search results

1 – 10 of 16
Article
Publication date: 10 February 2022

Li Wei and Kong Dejun

This paper aims to analyze the effect of Y2O3 mass fraction on the tribological performance of CrNi coating, which solved the problem of wear resistance on AISI H13 steel.

Abstract

Purpose

This paper aims to analyze the effect of Y2O3 mass fraction on the tribological performance of CrNi coating, which solved the problem of wear resistance on AISI H13 steel.

Design/methodology/approach

Y2O3 reinforced CrNi coatings were fabricated on AISI H13 steel. The microstructure and phases of obtained coatings were analyzed using a super-depth of field microscope and X-ray diffraction, respectively, and the effects of Y2O3 mass fraction on the microstructure and wear resistance were methodically investigated using a wear tester.

Findings

The average coefficients of friction and wear rates of Y2O3 reinforced CrNi coatings decrease with the increase of Y2O3 mass fraction, in which the Y2O3 plays a role of friction reduction and wear resistance. The wear mechanism of Y2O3 reinforced CrNi coating is primary abrasive wear, accompanied by adhesive wear, which is contributed to the grain refinement and dense structure by the Y2O3 addition.

Originality/value

The Y2O3 was added to the CrNi coating by laser cladding, and the effect mechanism of Y2O3 mass fraction on the tribological performance of CrNi coating was established by the wear model.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 February 2020

Kong Dejun and Li Jiahong

The purpose of this paper is to evaluate the salt spray corrosion (SSC) and electrochemical corrosion performances of CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings on H13 steel…

Abstract

Purpose

The purpose of this paper is to evaluate the salt spray corrosion (SSC) and electrochemical corrosion performances of CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings on H13 steel, which improved the corrosion resistance of H13 hot work mold.

Design/methodology/approach

CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings were fabricated on H13 hot work mold steel using a laser cladding and cathodic arc ion plating. The SSC and electrochemical performances of obtained coatings were investigated using a corrosion test chamber and electrochemical workstation, respectively. The corrosion morphologies, microstructure and phases were analyzed using an electron scanning microscope, optical microscope and X-ray diffraction, respectively, and the mechanisms of corrosion resistance were also discussed.

Findings

The CrNi coating is penetrated by corrosion media, producing the oxide of Fe3O4 on the coating surface; and the TiAlN coating is corroded to enter into the CrNi coating, forming the oxides of TiO and NiO, the mechanism is pitting corrosion, whereas the CrNi–Al2O3–TiO2 coating is not penetrated, with no oxides, showing the highest SSC resistance among the three kinds of coatings. The corrosion potential of CrNi coating, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings was –0.444, –0.481 and –0.334 V, respectively, and the corresponding polarization resistances were 3,074, 2,425 and 86,648 cm2, respectively. The electrochemical corrosion resistance of CrNi–Al2O3–TiO2 coating is the highest, which is enhanced by the additions of Al2O3 and TiO2.

Originality/value

The CrNi, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings on H13 hot work mold were firstly evaluated by the SSC and electrochemical performances.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 February 2022

Li Wei and Kong Dejun

The purpose of this study is to investigate the effect of Y2O3 mass fraction on the electrochemical corrosion performance of CrNi coating, which provided a foundation for the…

148

Abstract

Purpose

The purpose of this study is to investigate the effect of Y2O3 mass fraction on the electrochemical corrosion performance of CrNi coating, which provided a foundation for the performance optimization of CrNi coatings.

Design/methodology/approach

CrNi coatings with the different Y2O3 mass fractions were fabricated on AISI H13 steel by laser cladding, and the effect of Y2O3 mass fraction on the electrochemical performance of CrNi coating in 3.5% NaCl solution was investigated using an electrochemical workstation.

Findings

The electrochemical corrosion performance of CrNi coating enhances with the increase of Y2O3 mass fraction, and the CrNi–15%Y2O3 coating has the largest polarization resistance and the lowest corrosion current density, which displays the best electrochemical performance among the CrNi–5%Y2O3, –10%Y2O3 and –15%Y2O3 coatings. The protective films are formed with the increase of Y2O3 mass fraction, which inhibits the occurrence of electrochemical corrosion.

Originality/value

The Y2O3 was first added to the CrNi coating to improve its electrochemical corrosion performance, and the influence of Y2O3 on the corrosion resistance of the CrNi coating was discussed by the corrosion model.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 March 2008

Manpreet Kaur, Harpreet Singh and Satya Prakash

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature…

1464

Abstract

Purpose

This paper seeks to summarise the results of available research on the use of high velocity oxy‐fuel (HVOF) thermal‐spray technique to provide protection against high temperature corrosion and erosion‐corrosion of materials.

Design/methodology/approach

This paper describes one of the recent thermal‐spray processes, namely HVOF thermal‐spray technology and presents a survey of the studies on the use of this technique to provide protection against corrosion and erosion‐corrosion of high temperature alloys, with a special emphasis on boiler steels.

Findings

High temperature corrosion and erosion‐corrosion are serious problems observed in steam‐powered electricity generation plants, gas turbines, internal combustion engines, fluidized bed combustors, industrial waste incinerators and recovery boilers in paper and pulp industries. These problems can be prevented by changing the material or altering the environment, or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating materials from the environment is gaining importance in surface engineering. Amongst various surface modifying techniques, thermal spraying has developed relatively rapidly due to the use of advanced coating formulations and improvements in coating application technology. One of the variants of thermal spraying, namely HVOF has gained popularity in recent times due to its flexibility for in‐situ applications and superior coating properties.

Research limitations/implications

This review covers mainly information that has been reported previously in the open literature, international journals and some well‐known textbooks.

Practical implications

The paper presents a concise summary of information for scientists and academics, planning to start their research work in the area of surface engineering.

Originality/value

This paper fulfils an identified information/resources need and offers practical help to an individual starting out on a career in the area of surface engineering for erosion‐corrosion and wear.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 January 2024

Meigui Yin, Lei Zhang and Longxiang Huang

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Abstract

Purpose

The purpose of this paper is to study the effect of surface salt spray duration on the fretting wear and electrochemical corrosion behaviors of Inconel 690 alloy.

Design/methodology/approach

A high-temperature steam generator was applied to salt spray test samples, a fretting wear rig was used to realize the damage behavior tests, an electrochemical workstation was applied to analysis the changes of each sample’s corrosion dynamic response before and after fretting wear.

Findings

The thickness of the oxide film that formed on sample surface was increased with the salt spray duration, and somewhat it could act as lubrication during the fretting wear process; however, the corrosive chloride would accelerate the fretting mechanical damage behavior.

Originality/value

In a salt steam spray condition, the fretting tribo-corrosion behaviors of Inconel 690 alloy surface was studied.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 February 2008

Mathias Woydt, Bernard Criqui, Gérard Desplanches and Tom Linneman

The purpose of this paper is to underline the future need for OEMs to receive lowSAP, polymer‐ and metal‐free engine oils with high‐viscosity indices and to illuminate for other…

Abstract

Purpose

The purpose of this paper is to underline the future need for OEMs to receive lowSAP, polymer‐ and metal‐free engine oils with high‐viscosity indices and to illuminate for other OEMs the technical feasibility for application of alternative engine oils based on esters or blends of hydrocarbons with esters or polyglycols.

Design/methodology/approach

The strategic goal depends technically on the use of intrinsic properties of alternative base fluids, thus substituing some additives, like anti‐wear, extreme pressure and viscosity index improvers. The prone wear resistance of novel triboactive/‐reactive materials enables higher portions of mixed/boundary lubrication generated by oils with a lower viscosity.

Findings

Overall, the different bionotox and low‐ash prototype engine oils with reduced additive contents displayed isoperformance regarding the tribological behaviour against cast iron and triboreactive materials. APS‐Tin−2Cr2O2n−1 displayed an overall wear resistance comparable with grey cast iron with high‐carbon content and liner wear reduction of one order of magnitude when mated with Mo‐based rings. Both tests confirmed the potential for substituing molybdenum‐based rings by APS‐Tin−2Cr2O2n−1. The most significant reduction in “system wear” down to “zero wear” was demonstrated by mating the APS‐Tin−2Cr2O2n−1 coated piston rings with smooth machined HVOF‐(Ti,Mo)(C,N) liner coatings.

Research limitations/implications

As lubricants are today not part of the core business of automotive OEMs, the next steps have to be proposed by the petrochemical suppliers. It is recalled here that some OEMs in their history developed and produced lubricants.

Practical implications

The customer will appreciate any increase in longevity resulting in reduced maintenance. The OEM now owns, under increased solicitations, now a future‐oriented tool box in order to respond to environmental and CAFÉ demands with reasonable cost management.

Originality/value

This OEM report displays the complete methodology in order to adopt alternative engine oils in existing engine architectures.

Details

Industrial Lubrication and Tribology, vol. 60 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 July 2023

Badegül Tunçay, Harun Çuğ, Tansel Tunçay, Dursun Özyürek and Katarzyna Cesarz-Andraczke

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Abstract

Purpose

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Design/methodology/approach

It was pre-formed under a protective atmosphere at 900 °C under a force of 45 MPa and sintered for 1 h under 10–6 Mbar in an atmosphere-controlled heat treatment furnace at 1,100 °C. The relationship between microstructural properties, SEM, XRD, density, microhardness and corrosion behaviour of pre-alloyed NiTi alloys produced by two different methods with the production method was investigated.

Findings

As a result of the studies, TiO, NiTi, NiTi2 and Ni3Ti intermetallics were determined in XRD examinations. The best surface roughness was observed in the mechanically milled (MM’ed) pre-alloyed NiTi alloy compared to the pre-alloyed NiTi alloy mixed with turbula. The corrosion tests performed in 3.5% NaCl solution determined that the MM’ed pre-alloyed NiTi alloy had better corrosion resistance than the pre-alloyed NiTi alloy mixed with turbula. Pitting corrosion was visualized in the SEM images taken from the corrosion surfaces.

Originality/value

Two different PM methods produced pre-alloyed NiTi powders, and the effects of these methods on the mechanical and corrosion resistance of NiTi alloys were systematically investigated for the first time.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1965

USA Forecast guide for cathodically protecting underground steelwork Externally‐applied currents have long been used to protect ferrous pipelines from underground corrosion. The…

Abstract

USA Forecast guide for cathodically protecting underground steelwork Externally‐applied currents have long been used to protect ferrous pipelines from underground corrosion. The amounts of protective current required, however, vary considerably from one installation to another. Ideally, these amounts would equal the corrosion currents measured on underground pipelines, but in practice this is not the case.

Details

Anti-Corrosion Methods and Materials, vol. 12 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 3 May 2016

Xiaodong Zhang, Xiaohua Jie, Liuyan Zhang, Song Luo and Qiongbin Zheng

This paper aims to discuss that a WC/Co-Cr alloy coating was applied to the surface of H13 steel by laser cladding.

Abstract

Purpose

This paper aims to discuss that a WC/Co-Cr alloy coating was applied to the surface of H13 steel by laser cladding.

Design/methodology/approach

The oxidation behavior of the WC/Co-Cr alloy coating at 600°C was investigated by comparing it with the performance of the steel substrate to better understand the thermal stability of H13 steel.

Findings

The results showed that the WC/Co-Cr alloy coating exhibited better high-temperature oxidation resistance and thermal stability than did uncoated H13 steel. The coated H13 steel had a lower mass gain rate and higher microhardness than did the substrate after different oxidation times.

Originality/value

The WC/Co-Cr alloy coating was composed of e-Co, CW3, Co6W6C, Cr23C6 and Cr7C3; this mixture offered good thermal stability and better high-temperature oxidation resistance.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 March 1956

TIN RESEARCH, 1955. JUDGING from the Tin Research Institute's Annual Report for 1955, that body has had a busy year. An improved method of tinning cast iron, a test for assessing…

Abstract

TIN RESEARCH, 1955. JUDGING from the Tin Research Institute's Annual Report for 1955, that body has had a busy year. An improved method of tinning cast iron, a test for assessing the rust‐resistance of tinplate and a greater appreciation outside the Institute of the value of tin‐zinc and tin‐nickel alloys are some of the fruits of last year's endeavours.

Details

Anti-Corrosion Methods and Materials, vol. 3 no. 3
Type: Research Article
ISSN: 0003-5599

1 – 10 of 16