Search results

1 – 10 of 413
Article
Publication date: 11 October 2019

Peng Zhang, Muhammad Aqeel Ashraf, Zhenling Liu, Wan-Xi Peng and David Ross

This paper aims to investigate the free convection, heat transfer and entropy generation numerically and experientially. A numerical/experimental investigation is carried out to…

123

Abstract

Purpose

This paper aims to investigate the free convection, heat transfer and entropy generation numerically and experientially. A numerical/experimental investigation is carried out to investigate the free convection hydrodynamically/thermally and entropy generation.

Design/methodology/approach

The coupled lattice Boltzmann method is used as a numerical approach which keeps the significant advantages of standard lattice Boltzmann method with better numerical stability. On the other hand, the thermal conductivity and dynamic viscosity are measured using modern devices in the laboratory.

Findings

Some correlations based on the temperature at different nanofluid concentration are derived and used in the numerical simulations. In this regard, the results will be accurate with respect to using theoretical properties of nanofluid, and close agreements will be detected between present results and the previous numerical and experimental works. The numerical investigation is done under the effect of Rayleigh number (103 < Ra < 106), volume concentration of nanofluid (?? = 0.5, 1, 1.5, 2, 2.5 and 3%) and thermal configuration of the cavity (Cases A, B, C and D).

Originality/value

The originality of the present work lies in coupling of the lattice Boltzmann method with experimental observations to analyse the free convection in a cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 January 2020

Mahshid Zaresharif, Fatemeh Zarei, Ali Mohammad Ranjbar, Loke Kok Foong and David Ross

This paper aims to provide an experimental/numerical analysis of free convection within a hollow/finned cavity.

Abstract

Purpose

This paper aims to provide an experimental/numerical analysis of free convection within a hollow/finned cavity.

Design/methodology/approach

The hollow square cavity is equipped with eight active fins which have a similar configuration and different temperatures. Furthermore, four different thermal arrangements are considered to determine the order of temperature for each fin. The coupled lattice Boltzmann method is used, which not only maintains the considerable advantages of standard lattice Boltzmann method such as accuracy but also enhances the stability of this method.

Findings

The cavity is filled with TiO2-SiO2/Water-Ethylene Glycol nanofluid. The thermal conductivity and dynamic viscosity of nanofluid are experimentally measured using high-precision devices in six concentrations of the nanoparticle. In this study, some main parameters, including a range of Rayleigh number (103 < Ra < 106), the concentration of nanofluid (0.5 to 3 Vol.%) and thermal arrangements of fins, are considered. The effects of these main parameters on the flow, isotherms, heat transfer performance and entropy generation are studied.

Originality/value

The originality of this paper is combining the numerical simulation (lattice Boltzmann method) using a modern approach with experimental observations of nanofluid’s properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2012

C.R. Leonardi, D.R.J. Owen and Y.T. Feng

The purpose of this paper is to present a novel computational framework capable of simulating the block cave phenomenon of fines migration in two dimensions. Fines migration is…

Abstract

Purpose

The purpose of this paper is to present a novel computational framework capable of simulating the block cave phenomenon of fines migration in two dimensions. Fines migration is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material. A greater understanding of the kinematic behaviour of fines and ore within the cave during draw is integral to the solution of this problem.

Design/methodology/approach

The lattice Boltzmann method (LBM) is employed in a nonlinear form to represent the fines as a continuum, and it is coupled to the discrete element method (DEM) which is used to represent large blocks. The issues relevant to this approach, such as fluid‐solid interaction, the synchronisation of explicit schemes, and the characterisation of a bulk material as a non‐Newtonian fluid are discussed.

Findings

Results of the 2D simulations reveal migration trends for the geometries, material properties and operational sequences analysed. By executing an extensive programme of numerical experiments the influence of these and other relevant block cave factors on the migration of fines could be isolated.

Originality/value

To the authors' knowledge, this is the first time the LBM has been used to simulate the flow of bulk materials. The non‐Newtonian LBM‐DEM framework is also a novel approach to the investigation of fines migration, which until now has been limited to scale models, cellular automata or pure DEM simulations. The results of the 2D migration analyses highlight the potential for this novel approach to be applied in an industrial context and also encourage the extension of the framework to 3D.

Article
Publication date: 10 August 2020

Somnath Santra, Shubhadeep Mandal and Suman Chakraborty

The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The…

1212

Abstract

Purpose

The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The phase-field method is of emerging importance in numerical computation of transport phenomena involving multiple phases and/or components. This method is not only used to model interfacial phenomena typical to multiphase flows encountered in engineering and nature but also turns out to be a promising tool in modeling the dynamics of complex fluid-fluid interfaces encountered in physiological systems such as dynamics of vesicles and red blood cells). Intrinsically, a priori unknown topological evolution of interfaces offers to be the most concerning challenge toward accurate modeling of moving boundary problems. However, the numerical difficulties can be tackled simultaneously with numerical convenience and thermodynamic rigor in the paradigm of the phase field method.

Design/methodology/approach

The phase-field method replaces the macroscopically sharp interfaces separating the fluids by a diffuse transition layer where the interfacial forces are smoothly distributed. As against the moving mesh methods (Lagrangian) for the explicit tracking of interfaces, the phase-field method implicitly captures the same through the evolution of a phase-field function (Eulerian). In contrast to the deployment of an artificially smoothing function for the interface as used in the volume of a fluid or level set method, however, the phase-field method uses mixing free energy for describing the interface. This needs the consideration of an additional equation for an order parameter. The dynamic evolution of the system (equation for order parameter) can be described by AllenCahn or CahnHilliard formulation, which couples with the Navier–Stokes equation with the aid of a forcing function that depends on the chemical potential and the gradient of the order parameter.

Findings

In this review, first, the authors discuss the broad motivation and the fundamental theoretical foundation associated with phase-field modeling from the perspective of computational microfluidics. They subsequently pinpoint the outstanding numerical challenges, including estimations of the model-free parameters. They outline some numerical examples, including electrohydrodynamic flows, to demonstrate the efficacy of the method. Finally, they pinpoint various emerging issues and futuristic perspectives connecting the phase-field method and computational microfluidics.

Originality/value

This paper gives unique perspectives to future directions of research on this topic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 January 2019

Min Wang, Y.T. Feng, Ting T. Zhao and Yong Wang

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand…

Abstract

Purpose

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.

Design/methodology/approach

The mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.

Findings

It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Originality/value

A novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2024

Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Abstract

Purpose

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Design/methodology/approach

In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.

Findings

The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.

Originality/value

The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2010

Mohamed Amine Moussaoui, Mohamed Jami, Ahmed Mezrhab and Hassan Naji

The purpose of this paper is to investigate the laminar flow and heat transfer characteristics in a two‐dimensional horizontal channel with two square blocks placed side‐by‐side…

Abstract

Purpose

The purpose of this paper is to investigate the laminar flow and heat transfer characteristics in a two‐dimensional horizontal channel with two square blocks placed side‐by‐side using a numerical scheme based on a coupling between the lattice Boltzmann method and the finite difference method.

Design/methodology/approach

The multiple‐relaxation‐time (MRT) lattice Boltzmann equation model coupled with the finite difference method are used to predict numerically the velocity and the temperature fields.

Findings

A complex structure of the fluid flow was observed for various dimensionless block separation distance (G). An unsteady flow was found when the two blocks are placed side by side (G = 0). For G < 1.5, the presence of each block develops the street of Van Karman which generates complex binary vortex street. In the opposite case (G > 1.5), the effect of this parameter (G) on the fluid is reduced, whereas, the distance between the blocks and the nearest walls have a great influence on the fluid flow and the heat transfer. When the obstacles are posed on the walls (G = 3), an important heat exchange between the blocks and the nearest walls is noted.

Originality/value

This study offers more knowledge on natural convection in an obstructed channel. Furthermore, this work shows the effectiveness of the MRT lattice Boltzmann equation model for this kind of geometry.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 July 2019

Ali Ayyed Abdul-Kadhim, Fue-Sang Lien and Eugene Yee

This study aims to modify the standard probabilistic lattice Boltzmann methodology (LBM) cellular automata (CA) algorithm to enable a more realistic and accurate computation of…

Abstract

Purpose

This study aims to modify the standard probabilistic lattice Boltzmann methodology (LBM) cellular automata (CA) algorithm to enable a more realistic and accurate computation of the ensemble rather than individual particle trajectories that need to be updated from one time step to the next (allowing, as such, a fraction of the collection of particles in any lattice grid cell to be updated in a time step, rather than the entire collection of particles as in the standard LBM-CA algorithm leading to a better representation of the dynamic interaction between the particles and the background flow). Exploitation of the inherent parallelism of the modified LBM-CA algorithm to provide a computationally efficient scheme for computation of particle-laden flows on readily available commodity general-purpose graphics processing units (GPGPUs).

Design/methodology/approach

This paper presents a framework for the implementation of a LBM for the simulation of particle transport and deposition in complex flows on a GPGPU. Towards this objective, the authors have shown how to map the data structure of the LBM with a multiple-relaxation-time (MRT) collision operator and the Smagorinsky subgrid-scale turbulence model (for turbulent fluid flow simulations) coupled with a CA probabilistic method (for particle transport and deposition simulations) to a GPGPU to give a high-performance computing tool for the calculation of particle-laden flows.

Findings

A fluid-particle simulation using our LBM-MRT-CA algorithm run on a single GPGPU was 160 times as computationally efficient as the same algorithm run on a single CPU.

Research limitations/implications

The method is limited by the available computational resources (e.g. GPU memory size).

Originality/value

A new 3D LBM-MRT-CA model was developed to simulate the particle transport and deposition in complex laminar and turbulent flows with different hydrodynamic characteristics (e.g. vortex shedding, impingement, free shear layer, turbulent boundary layer). The solid particle information is encapsulated locally at the lattice grid nodes, allowing for straightforward mapping of the datastructure onto a GPGPU enabling a massive parallel execution of the LBM-MRT-CA algorithm. The new particle transport algorithm was based on the local (bulk) particle density and velocity and provides more realistic results for the particle transport and deposition than the standard LBM-CA algorithm.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 April 2024

Dong Li, Yu Zhou, Zhan-Wei Cao, Xin Chen and Jia-Peng Dai

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By…

Abstract

Purpose

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By applying this method, detailed information about heat transfer and phase change processes within the pores can be obtained, while also enabling the calculation of larger-scale SLPT problems, such as shell-and-tube phase change heat storage systems.

Design/methodology/approach

Three-dimensional (3D) pore-scale enthalpy-based LB model is developed. The computational input parameters at the REV scale are derived from calculations at the pore scale, ensuring consistency between the two scales. The approaches to reconstruct the 3D porous structure and determine the REV of metal foam were discussed. The implementation of conjugate heat transfer between the solid matrix and the solid−liquid phase change material (SLPCM) for the proposed model is developed. A simple REV-scale LB model under the local thermal nonequilibrium condition is presented. The method of bridging the gap between the pore-scale and REV-scale enthalpy-based LB models by the REV is given.

Findings

This coupled method facilitates detailed simulations of flow, heat transfer and phase change within pores. The approach holds promise for multiscale calculations in latent heat storage devices with porous structures. The SLPT of the heat sinks for electronic device thermal control was simulated as a case, demonstrating the efficiency of the present models in designing and optimizing SLPT devices.

Originality/value

A coupled pore-scale and REV-scale LB method as a numerical tool for investigating phase change in porous materials was developed. This innovative approach allows for the capture of details within pores while addressing computations over a large domain. The LB method for simulating SLPT from the pore scale to the REV scale was given. The proposed method addresses the conjugate heat transfer between the SLPCM and the solid matrix in the enthalpy-based LB model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 413