To read this content please select one of the options below:

Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method

Min Wang (Rockfield Software Ltd, Swansea, UK)
Y.T. Feng (Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, UK)
Ting T. Zhao (Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, UK)
Yong Wang (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China)

Engineering Computations

ISSN: 0264-4401

Article publication date: 24 January 2019

Issue publication date: 7 March 2019

195

Abstract

Purpose

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.

Design/methodology/approach

The mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.

Findings

It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Originality/value

A novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Keywords

Acknowledgements

The authors gratefully acknowledge the financial support from the national natural science foundations of China. (No. 51579237).

Citation

Wang, M., Feng, Y.T., Zhao, T.T. and Wang, Y. (2019), "Modelling of sand production using a mesoscopic bonded particle lattice Boltzmann method", Engineering Computations, Vol. 36 No. 2, pp. 691-706. https://doi.org/10.1108/EC-02-2018-0093

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles