Search results

1 – 10 of over 7000
Article
Publication date: 5 March 2018

Stéphane Vivier

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine…

Abstract

Purpose

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine used as an integrated starter generator. This method makes it possible to carry out this design in a very efficient manner, in comparison with conventional optimization approaches.

Design/methodology/approach

The search for optimal conditions is achieved by the joint use of two multi-physics models of the machine to be optimized. The former models most finely the physical functioning of the machine; it is called “fine model”. The second model describes the same physical phenomena as the fine model but must be much quicker to evaluate. Thus, to minimize its evaluation time, it is necessary to simplify it considerably. It is called “coarse model”. The lightness of the coarse model allows it to be used intensively by conventional optimization algorithms. On the other hand, the fine reference model makes it possible to recalibrate the results obtained from the coarse model at any instant, and mainly at the end of each classical optimization. The difference in definition between fine and coarse models implies that these two models do not give the same output values for the same input configuration. The approach described in this study proposes to correct the values of the coarse model outputs by constructing an adjustment (correcting) response surface. This gives the name to this method. It then becomes possible to have the entire load of the optimization carried over to the coarse model adjusted by the addition of this correction response surface.

Findings

The application of this method shows satisfactory results, in particular in comparison with those obtained with a traditional optimization approach based on a single (fine) model. It thus appears that the approach by CRSM makes it possible to converge much more quickly toward the optimal configurations. Also, the use of response surfaces for optimization makes it possible to capitalize the modeling data, thus making it possible to reuse them, if necessary, for subsequent optimal design studies. Numerous tests show that this approach is relatively robust to the variations of many important functioning parameters.

Originality/value

The CRSM technique is an indirect multi-model optimization method. This paper presents the application of this relatively undeveloped optimization approach, combining the features and benefits of (Indirect) efficient global optimization techniques and (multi-model) space mapping methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 April 2020

Huahan Liu, Qiang Dong and Wei Jiang

The purpose of this paper is to present a new methodology, used for dynamic reliability analysis of a gear transmission system (GTS) of wind turbine (WT), which could be used for…

Abstract

Purpose

The purpose of this paper is to present a new methodology, used for dynamic reliability analysis of a gear transmission system (GTS) of wind turbine (WT), which could be used for assembly decision-making of the parts with errors to improve the GTS’s performance.

Design/methodology/approach

This paper involves the dynamic and dynamic reliability analysis of a GTS. The history curves of dynamic responses of the parts are obtained with the developed gear-bearing coupling dynamic model considering the random errors, failure dependency and random load. Then, the surrogate models of the mean and standard deviation of responses are presented by statistics, rain flow counting method and corrected-partial least squares regression response surface method. Further, a novel dynamic reliability model based on the maximum extreme theory, a theory of sequential statistics, equivalent principles and the inverse transform theory of random variable sampling, is developed to overcome the limitations of traditional methods.

Findings

The dynamic reliability of GTS considering the different impact factors are evaluated. The proposed reliability methodology not only overcomes the limitations associated with traditional approaches but also provides good guidance to assembly the parts in a GTS to its best performance.

Originality/value

Instead of constant errors, this paper considers the randomness of the impact factors to develop the dynamic reliability model. Further, instead of the limitation of the normal distribution of the random parameters in the traditional method, the proposed methodology can deal with the problems with non-normal distribution parameters, which is more suitable for the real engineering problems.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 March 2019

Hailiang Su, Fengchong Lan, Yuyan He and Jiqing Chen

Meta-model method has been widely used in structural reliability optimization design. The main limitation of this method is that it is difficult to quantify the error caused by…

Abstract

Purpose

Meta-model method has been widely used in structural reliability optimization design. The main limitation of this method is that it is difficult to quantify the error caused by the meta-model approximation, which leads to the inaccuracy of the optimization results of the reliability evaluation. Taking the local high efficiency of the proxy model, this paper aims to propose a local effective constrained response surface method (LEC-RSM) based on a meta-model.

Design/methodology/approach

The operating mechanisms of LEC-RSM is to calculate the index of the local relative importance based on numerical theory and capture the most effective area in the entire design space, as well as selecting important analysis domains for sample changes. To improve the efficiency of the algorithm, the constrained efficient set algorithm (ESA) is introduced, in which the sample point validity is identified based on the reliability information obtained in the previous cycle and then the boundary sampling points that violate the constraint conditions are ignored or eliminated.

Findings

The computational power of the proposed method is demonstrated by solving two mathematical problems and the actual engineering optimization problem of a car collision. LEC-RSM makes it easier to achieve the optimal performance, less feature evaluation and fewer algorithm iterations.

Originality/value

This paper proposes a new RSM technology based on proxy model to complete the reliability design. The originality of this paper is to increase the sampling points by identifying the local importance of the analysis domain and introduce the constrained ESA to improve the efficiency of the algorithm.

Abstract

Details

The Emerald Review of Industrial and Organizational Psychology
Type: Book
ISBN: 978-1-78743-786-9

Article
Publication date: 5 September 2016

Vajiha Mozafary and Pedram Payvandy

The purpose of this paper is to conduct a survey on research in fabric and cloth simulation using mass spring model. Also in this paper some of the common methods in process of…

Abstract

Purpose

The purpose of this paper is to conduct a survey on research in fabric and cloth simulation using mass spring model. Also in this paper some of the common methods in process of fabric simulation in mass spring model are discussed and compared.

Design/methodology/approach

This paper reviews and compares presented mesh types in mass spring model, forces applied on model, super elastic effect and ways to settle the super elasticity problem, numerical integration methods for solving equations, collision detection and its response. Some of common methods in fabric simulation are compared to each other. And by using examples of fabric simulation, advantages and limitations of each technique are mentioned.

Findings

Mass spring method is a fast and flexible technique with high ability to simulate fabric behavior in real time with different environmental conditions. Mass spring model has more accuracy than geometrical models and also it is faster than other physical modeling.

Originality/value

In the edge of digital, fabric simulation technology has been considered into many fields. 3D fabric simulation is complex and its implementation requires knowledge in different fields such as textile engineering, computer engineering and mechanical engineering. Several methods have been presented for fabric simulation such as physical and geometrical models. Mass spring model, the typical physically based method, is one of the methods for fabric simulation which widely considered by researchers.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 24 August 2021

Yong-Hua Li, Chi Zhang, Hao Yin, Yang Cao and Xiaoning Bai

This paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue…

161

Abstract

Purpose

This paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue cumulative damage theory.

Design/methodology/approach

A fatigue life analysis method by modifying SN curve and considering material difference is presented, which improves the fatigue life of EMU gear based on shape modification optimization. A corrected method for stress amplitude, average stress and SN curve is proposed, which considers low stress cycle, material difference and other factors. The fatigue life prediction of EMU gear is carried out by corrected SN curve and transient dynamic analysis. Moreover, the gear modification technology combined with intelligent optimization method is adopted to investigate the approach of fatigue life analysis and improvement.

Findings

The results show that it is more corresponded to engineering practice by using the improved fatigue life analysis method than the traditional method. The function of stress and modification amount established by response surface method meets the requirement of precision. The fatigue life of EMU gear based on the intelligent algorithm for seeking the optimal modification amount is significantly improved compared with that before the modification.

Originality/value

The traditional fatigue life analysis method does not consider the influence of working condition and material. The life prediction results by using the method proposed in this paper are more accurate and ensure the safety of the people in the EMU. At the same time, the combination of intelligent algorithm and gear modification can improve the fatigue life of gear on the basis of accurate prediction, which is of great significance to the portability of EMU maintenance.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 July 2021

Yutian Yin, Hongda Zhou, Cai Chen, Yi Zheng, Hongqiao Shen and Yubing Gong

The simulated temperature profile of the printed circuit board assembly (PCBA) during reflow soldering process deviates from the actual profile. To reduce this relative deviation…

Abstract

Purpose

The simulated temperature profile of the printed circuit board assembly (PCBA) during reflow soldering process deviates from the actual profile. To reduce this relative deviation, a new strategy based on the Kriging response surface and the Multi-Objective Genetic Algorithm (MOGA) optimizing method is proposed.

Design/methodology/approach

The simulated temperature profile of the PCBA during reflow soldering process deviates from the actual profile. To reduce this relative deviation, a new strategy based on the Kriging response surface and the MOGA optimizing method is proposed.

Findings

Several critical influencing parameters such as temperature and the convective heat transfer coefficient of the specific temperature zones are selected as the correction parameters. The hyper Latins sampling method is implemented to distribute the design points, and the Kriging response surface model of the soldering process is constructed. The updated model is achieved and validated by the test. The relative derivation is reduced from the initial value of 43.4%–11.8% in terms of the time above the liquidus line.

Originality/value

A new strategy based on the Kriging response surface and the MOGA optimizing method is proposed.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 July 2017

Leifur Leifsson and Slawomir Koziel

The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models.

Abstract

Purpose

The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models.

Design/methodology/approach

The proposed approach is based on the surrogate-based optimization paradigm. In particular, multi-fidelity surrogate models are used in the optimization process in place of the computationally expensive high-fidelity model. The multi-fidelity surrogate is constructed using physics-based low-fidelity models and a proper correction. This work introduces a novel correction methodology – referred to as the adaptive response prediction (ARP). The ARP technique corrects the low-fidelity model response, represented by the airfoil pressure distribution, through suitable horizontal and vertical adjustments.

Findings

Numerical investigations show the feasibility of solving real-world problems involving optimization of transonic airfoil shapes and accurate computational fluid dynamics simulation models of such surfaces. The results show that the proposed approach outperforms traditional surrogate-based approaches.

Originality/value

The proposed aerodynamic design optimization algorithm is novel and holistic. In particular, the ARP correction technique is original. The algorithm is useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces, which is challenging using conventional methods because of excessive computational costs.

Article
Publication date: 2 November 2015

Yanchuang Cao, Junjie Rong, Lihua Wen and Jinyou Xiao

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time…

215

Abstract

Purpose

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time domains.

Design/methodology/approach

A newly developed kernel-independent fast multipole method (KIFMM) is applied to accelerating the evaluation of displacements, strains and stresses in frequency domain elastodynamic BEM analysis, in which the far-field interactions are evaluated efficiently utilizing equivalent densities and check potentials. Although there are six boundary integrals with unique kernel functions, by using the elastic theory, the authors managed to accelerate these six boundary integrals by KIFMM with the same kind of equivalent densities and check potentials. The boundary integral equations are discretized by Nyström method with curved quadratic elements. The method is further used to conduct the time-domain analysis by using the frequency-domain approach.

Findings

Numerical results show that by the fast BEM, high accuracy can be achieved and the computational complexity is brought down to linear. The performance of the present method is further demonstrated by large-scale simulations with more than two millions of unknowns in the frequency domain and one million of unknowns in the time domain. Besides, the method is applied to the topological derivatives for solving elastodynamic inverse problems.

Originality/value

An efficient KIFMM is implemented in the acceleration of the elastodynamic BEM. Combining with the Nyström discretization based on quadratic elements and the frequency-domain approach, an accurate and highly efficient fast BEM is achieved for large-scale elastodynamic frequency domain analysis and time-domain analysis.

Abstract

Details

The Emerald Review of Industrial and Organizational Psychology
Type: Book
ISBN: 978-1-78743-786-9

1 – 10 of over 7000