Search results

1 – 10 of 130
Article
Publication date: 5 March 2018

Stéphane Vivier

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine…

Abstract

Purpose

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine used as an integrated starter generator. This method makes it possible to carry out this design in a very efficient manner, in comparison with conventional optimization approaches.

Design/methodology/approach

The search for optimal conditions is achieved by the joint use of two multi-physics models of the machine to be optimized. The former models most finely the physical functioning of the machine; it is called “fine model”. The second model describes the same physical phenomena as the fine model but must be much quicker to evaluate. Thus, to minimize its evaluation time, it is necessary to simplify it considerably. It is called “coarse model”. The lightness of the coarse model allows it to be used intensively by conventional optimization algorithms. On the other hand, the fine reference model makes it possible to recalibrate the results obtained from the coarse model at any instant, and mainly at the end of each classical optimization. The difference in definition between fine and coarse models implies that these two models do not give the same output values for the same input configuration. The approach described in this study proposes to correct the values of the coarse model outputs by constructing an adjustment (correcting) response surface. This gives the name to this method. It then becomes possible to have the entire load of the optimization carried over to the coarse model adjusted by the addition of this correction response surface.

Findings

The application of this method shows satisfactory results, in particular in comparison with those obtained with a traditional optimization approach based on a single (fine) model. It thus appears that the approach by CRSM makes it possible to converge much more quickly toward the optimal configurations. Also, the use of response surfaces for optimization makes it possible to capitalize the modeling data, thus making it possible to reuse them, if necessary, for subsequent optimal design studies. Numerous tests show that this approach is relatively robust to the variations of many important functioning parameters.

Originality/value

The CRSM technique is an indirect multi-model optimization method. This paper presents the application of this relatively undeveloped optimization approach, combining the features and benefits of (Indirect) efficient global optimization techniques and (multi-model) space mapping methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Emre Cevikcan

Walking-worker assembly lines can be regarded as an effective method to achieve the above-mentioned characteristics. In such systems, workers, following each other, travel…

Abstract

Purpose

Walking-worker assembly lines can be regarded as an effective method to achieve the above-mentioned characteristics. In such systems, workers, following each other, travel workstations in sequence by performing all of the required tasks of their own product. As the eventual stage of assembly line design, efforts should be made for capacity adjustments to meet the demand in terms of allocating tasks to workers via assembly line balancing. In this context, the purpose of this study is to address the balancing problem for multi-model walking-worker assembly systems, with the aim of improving planning capability for such systems by means of developing an optimization methodology.

Design/methodology/approach

Two linear integer programming models are proposed to balance a multi-model walking-worker assembly line optimally in a sequential manner. The first mathematical programming model attempts to determine number of workers in each segment (i.e. rabbit chase loop) for each model. The second model generates stations in each segment to smooth workflow. What is more, heuristic algorithms are provided due to computational burden of mathematical programming models. Two segment generation heuristic algorithms and a station generation heuristic algorithm are provided for the addressed problem.

Findings

The application of the mathematical programming approach improved the performance of a tap-off box assembly line in terms of number of workers (9.1 per cent) and non-value-added time ratio (between 27.9 and 26.1 per cent for different models) when compared to a classical assembly system design. In addition, the proposed approach (i.e. segmented walking-worker assembly line) provided a more convenient working environment (28.1 and 40.8 per cent shorter walking distance for different models) in contrast with the overall walking-worker assembly line. Meanwhile, segment generation heuristics yielded reduction in labour requirement for a considerable number (43.7 and 49.1 per cent) of test problems. Finally, gaps between the objective values and the lower bounds have been observed as 8.3 per cent (Segment Generation Heuristic 1) and 6.1 (Segment Generation Heuristic 2).

Practical implications

The proposed study presents a decision support for walking-worker line balancing with high level of solution quality and computational performance for even large-sized assembly systems. That being the case, it contributes to the management of real-life assembly systems in terms of labour planning and ergonomics. Owing to the fact that the methodology has the potential of reducing labour requirement, it will present the opportunity of utilizing freed-up capacity for new lines in the start-up period or other bottleneck processes. In addition, this study offers a working environment where skill of the workers can be improved within reasonable walking distances.

Originality/value

To the best knowledge of the author, workload balancing on multi-model walking-worker assembly lines with rabbit chase loop(s) has not yet been handled. Addressing this research gap, this paper presents a methodology including mathematical programming models and heuristic algorithms to solve the multi-model walking-worker assembly line balancing problem for the first time.

Details

Assembly Automation, vol. 36 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 December 2023

Zihan Dang and Naiming Xie

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and…

Abstract

Purpose

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and capacity forecasting the most troublesome problems for production managers. In this paper, uncertain man-hours are represented as interval grey numbers, and the optimization problem of production line balance in the case of interval grey man-hours is studied to better evaluate the production line capacity.

Design/methodology/approach

First, this paper constructs the basic model of assembly line balance optimization for the single-product scenario, and on this basis constructs an assembly line balance optimization model under the multi-product scenario with the objective function of maximizing the weighted greyscale production line balance rate, second, this paper designs a simulated annealing algorithm to solve problem. A neighborhood search strategy is proposed, based on assembly line balance optimization, an assembly line capacity evaluation method with interval grey man-hour characteristics is designed.

Findings

This paper provides a production line balance optimization scheme with uncertain processing time for multi-product scenarios and designs a capacity evaluation method to provide managers with scientific management strategies so that decision-makers can scientifically solve the problems that the company's design production line is quite different from the actual production situation.

Originality/value

There are few literary studies on combining interval grey number with assembly line balance optimization. Therefore, this paper makes an important contribution in this regard.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 2 October 2018

Tugrul Oktay, Seda Arik, Ilke Turkmen, Metin Uzun and Harun Celik

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum…

Abstract

Purpose

The aim of this paper is to redesign of morphing unmanned aerial vehicle (UAV) using neural network for simultaneous improvement of roll stability coefficient and maximum lift/drag ratio.

Design/methodology/approach

Redesign of a morphing our UAV manufactured in Faculty of Aeronautics and Astronautics, Erciyes University is performed with using artificial intelligence techniques. For this purpose, an objective function based on artificial neural network (ANN) is obtained to get optimum values of roll stability coefficient (Clβ) and maximum lift/drag ratio (Emax). The aim here is to save time and obtain satisfactory errors in the optimization process in which the ANN trained with the selected data is used as the objective function. First, dihedral angle (φ) and taper ratio (λ) are selected as input parameters, C*lβ and Emax are selected as output parameters for ANN. Then, ANN is trained with selected input and output data sets. Training of the ANN is possible by adjusting ANN weights. Here, ANN weights are adjusted with artificial bee colony (ABC) algorithm. After adjusting process, the objective function based on ANN is optimized with ABC algorithm to get better Clβ and Emax, i.e. the ABC algorithm is used for two different purposes.

Findings

By using artificial intelligence methods for redesigning of morphing UAV, the objective function consisting of C*lβ and Emax is maximized.

Research limitations/implications

It takes quite a long time for Emax data to be obtained realistically by using the computational fluid dynamics approach.

Practical implications

Neural network incorporation with the optimization method idea is beneficial for improving Clβ and Emax. By using this approach, low cost, time saving and practicality in applications are achieved.

Social implications

This method based on artificial intelligence methods can be useful for better aircraft design and production.

Originality/value

It is creating a novel method in order to redesign of morphing UAV and improving UAV performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 April 2018

Chuanxu Wang, Yanbing Li and Zhengcai Wang

This paper aims to develop a bi-objective mixed integer non-linear programing model to optimize the supply chain networks consisting of raw material providers, final product…

Abstract

Purpose

This paper aims to develop a bi-objective mixed integer non-linear programing model to optimize the supply chain networks consisting of raw material providers, final product manufacturers and distribution centers. Raw material substitution caused by varying raw material supply amounts, prices and carbon emissions and final product substitution due to different product prices and carbon emissions are considered.

Design/methodology/approach

The proposed model aims to achieve total profit maximization and total carbon emission minimization. The objective function of carbon emissions is converted into a maximization problem by changing minimum to maximum. The composite objective function is the weighted sum of the bias value of each objective function. The model is then solved using software Lingo12.

Findings

Numerical analysis results show that an increase in the number of alternate raw materials for original raw material helps improve supply chain network performance, and variation in that number causes detectable but not significant changes in downstream final product substitution results.

Originality/value

The major differences between this work and existing research are as follows: first, although previous research considered carbon emissions in supply chain network optimization, it has not considered the substitution effects of products or raw materials. This paper considers the substitution of both raw material and productions. Second, the item substitution considered by previous research is derived from inventory shortage or price difference of original items. However, the substitution considered in the present paper is a response to differences in purchase price, production cost and carbon emissions for items.

Details

Kybernetes, vol. 47 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 May 2020

Emre Cevikcan and Mehmet Bulent Durmusoglu

Rabbit chase (RC) is used as one of the most effective techniques in manufacturing systems, as such systems have high level of adaptability and increased productivity in addition…

Abstract

Purpose

Rabbit chase (RC) is used as one of the most effective techniques in manufacturing systems, as such systems have high level of adaptability and increased productivity in addition to providing uniform workload balancing and skill improving environment. In assembly systems, RC inspires the development of walking worker assembly line (WWAL). On the other hand, U-type assembly lines (UALs) may provide higher worker utilization, lower space requirement and more convenient internal logistics when compared to straight assembly lines. In this context, this study aims to improve assembly line performance by generating RC cycles on WWAL with respect to task assignment characteristics of UAL within reasonable walking distance and space requirement. Therefore, a novel line configuration, namely, segmented rabbit chase-oriented U-type assembly line (SRCUAL), emerges.

Design/methodology/approach

The mathematical programming approach treats SRCUAL balancing problem in a hierarchical manner to decrease computational burden. Firstly, segments are generated via the first linear programming model in the solution approach for balancing SRCUALs to minimize total number of workers. Then, stations are determined within each segment for forward and backward sections separately using two different pre-emptive goal programming models. Moreover, three heuristics are developed to provide solution quality with computational efficiency.

Findings

The proposed mathematical programming approach is applied to the light-emitting diode (LED) luminaire assembly section of a manufacturing company. The adaptation of SRCUAL decreased the number of workers by 15.4% and the space requirement by 17.7% for LED luminaire assembly system when compared to UAL. Moreover, satisfactory results for the proposed heuristics were obtained in terms of deviation from lower bound, especially for SRCUAL heuristics I and II. Moreover, the results indicate that the integration of RC not only decreased the number of workers in 40.28% (29 instances) of test problems in U-lines, but also yielded less number of buffer points (48.48%) with lower workload deviation (75%) among workers in terms of coefficient of variation.

Practical implications

This study provides convenience for capacity management (assessing capacity and adjusting capacity by changing the number of workers) for industrial SRCUAL applications. Meanwhile, SRCUAL applications give the opportunity to increase the capacity for a product or transfer the saved capacity to the assembly of other products. As it is possible to provide one-piece flow with equal workloads via walking workers, SRCUAL has the potential for quick realization of defects and better lead time performance.

Originality/value

To the best of the authors’ knowledge, forward–backward task assignments in U-type lines have not been adapted to WWALs. Moreover, as workers travel overall the line in WWALs, walking time increases drastically. Addressing this research gap and limitation, the main innovative aspect of this study can be considered as the proposal of a new line design (i.e. SRCUAL) which is sourced from the hybridization of UALs and WWAL as well as the segmentation of the line with RC cycles. The superiority of SRCUAL over WWAL and UAL was also discussed. Moreover, operating systematic for SRCUAL was devised. As for methodical aspect, this study is the first attempt to solve the balancing problem for SRCUAL design.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 March 2018

Jinlin Gong, Frédéric Gillon and Nicolas Bracikowski

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original…

Abstract

Purpose

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original approach having high-order mapping.

Design/methodology/approach

The electromagnetic device to be optimally sized is a five-phase linear induction motor, represented through two levels of modeling: coarse (Kriging model) and fine.The optimization comparison of the three techniques on the five-phase linear induction motor is discussed.

Findings

The optimization results show that the OSM takes more time and iteration to converge the optimal solution compared to MM and Kriging-OSM. This is mainly because of the poor quality of the initial Kriging model. In the case of a high-quality coarse model, the OSM technique would show its domination over the other two techniques. In the case of poor quality of coarse model, MM and Kriging-OSM techniques are more efficient to converge to the accurate optimum.

Originality/value

Kriging-OSM is an original approach having high-order mapping. An advantage of this new technique consists in its capability of providing a sufficiently accurate model for each objective and constraint function and makes the coarse model converge toward the fine model more effectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2019

Shaomin He, Huan Yang, Guangzhuo Li, Sideng Hu and Xiangning He

This paper aims to analyze the dominant stray parameters of the DC bus bar and focus on weakening the influence of the stray parameters instead of reducing the value of the stray…

Abstract

Purpose

This paper aims to analyze the dominant stray parameters of the DC bus bar and focus on weakening the influence of the stray parameters instead of reducing the value of the stray parameters in DC bus bar while switching. By finding the mechanisms to reduce the effects of stray parameters on switching transient, the simple and straightforward optimization methods could be given for the engineering designer.

Design/methodology/approach

The investigations are focused on the equivalent circuit by segmented impedance evaluation in the low-frequency band and the energy propagation by wave impedance evaluation in the high frequency band. This paper proposes an equivalent impedance calculation model to locate the dominant stray parameters in the DC bus bar and takes the energy propagation characteristics using wave impedance into consideration, which can simplify the optimization design of DC bus bar.

Findings

According to the equivalent circuit and electromagnetic field analysis, this paper proves the existence of the dominant stray parameters in DC bus bar that is widely used on high-power converters and certifies that not all the stray parameters in different areas of DC bus bar have the same effects on switching process, which can give a good guidance for the optimization design of DC bus bar.

Originality/value

The positions of DC-link capacitors, resulting in only part of stray parameters in DC bus bar has more impact during switching, are significant to the DC bus bar optimization design. These stray parameters named dominant stray parameters in this paper play a leading role in the switching transient process. The area of DC bus bar, which is close to IGBTs and far from DC-link capacitors, contains the dominant stray parameters in the switching transient process. Therefore, the distance between DC-link capacitors and IGBTs should be shortened as much as possible. Based on the results, the efficiency for the DC bus bar optimization design could be improved by weakening the influence of the stray parameters, such as reducing the dominant stray parameters only. Therefore, it can save the cost and time of DC bus bar optimization design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 2003

Abdurrahman Hacıogˇlu and I˙brahim Özkol

In this study, the power of vibrational genetic algorithm (VGA) for transonic airfoil design and optimisation problems, which are generally characterized by multi‐model topology…

Abstract

In this study, the power of vibrational genetic algorithm (VGA) for transonic airfoil design and optimisation problems, which are generally characterized by multi‐model topology in the design parameter space, has been introduced. This type of problem is characterized by search and computational time to achieve satisfying solutions. In order to obtain more robust and faster algorithm, vibration concept, our earlier study, is further developed. This developed VGA is coupled with a full potential flow‐field solver for inverse design and airfoil optimisation problem in transonic case. The performance of this implemented strategy is compared with that offered by a classical or more commonly used genetic algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 7 March 2016

Stephan Körner and Frank Holzäpfel

Wake vortices that are generated by an aircraft as a consequence of lift constitute a potential danger to the following aircraft. To predict and avoid dangerous situations, wake…

Abstract

Purpose

Wake vortices that are generated by an aircraft as a consequence of lift constitute a potential danger to the following aircraft. To predict and avoid dangerous situations, wake vortex transport and decay models have been developed. Being based on different model physics, they can complement each other with their individual strengths. This paper investigates the skill of a Multi-Model Ensemble (MME) approach to improve prediction performance. Therefore, this paper aims to use wake vortex models developed by NASA (APA3.2, APA3.4, TDP2.1) and by DLR (P2P). Furthermore, this paper analyzes the possibility to use the ensemble spread to compute uncertainty envelopes.

Design/methodology/approach

An MME approach called Reliability Ensemble Averaging (REA) is adapted and used to the wake vortex predictions. To train the ensemble, a set of wake vortex measurements accomplished at the airports of Frankfurt (WakeFRA), Munich (WakeMUC) and at a special airport Oberpfaffenhofen was applied.

Findings

The REA approach can outperform the best member of the ensemble, on average, regarding the root-mean-square error. Moreover, the ensemble delivers reasonable uncertainty envelopes.

Practical implications

Reliable wake vortex predictions may be applicable for both tactical optimization of aircraft separation at airports and airborne wake vortex prediction and avoidance.

Originality/value

Ensemble approaches are widely used in weather forecasting, but they have never been applied to wake vortex predictions. Until today, the uncertainty envelopes for wake vortex forecasts have been computed among others from perturbed initial conditions or perturbed physics as well as from uncertainties from environmental conditions or from safety margins but not from the spread of structurally independent model forecasts.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 130