Search results

1 – 10 of over 14000
Article
Publication date: 11 November 2013

Giovanni Petrone, John Axerio-Cilies, Domenico Quagliarella and Gianluca Iaccarino

A probabilistic non-dominated sorting genetic algorithm (P-NSGA) for multi-objective optimization under uncertainty is presented. The purpose of this algorithm is to create a…

Abstract

Purpose

A probabilistic non-dominated sorting genetic algorithm (P-NSGA) for multi-objective optimization under uncertainty is presented. The purpose of this algorithm is to create a tight coupling between the optimization and uncertainty procedures, use all of the possible probabilistic information to drive the optimizer, and leverage high-performance parallel computing.

Design/methodology/approach

This algorithm is a generalization of a classical genetic algorithm for multi-objective optimization (NSGA-II) by Deb et al. The proposed algorithm relies on the use of all possible information in the probabilistic domain summarized by the cumulative distribution functions (CDFs) of the objective functions. Several analytic test functions are used to benchmark this algorithm, but only the results of the Fonseca-Fleming test function are shown. An industrial application is presented to show that P-NSGA can be used for multi-objective shape optimization of a Formula 1 tire brake duct, taking into account the geometrical uncertainties associated with the rotating rubber tire and uncertain inflow conditions.

Findings

This algorithm is shown to have deterministic consistency (i.e. it turns back to the original NSGA-II) when the objective functions are deterministic. When the quality of the CDF is increased (either using more points or higher fidelity resolution), the convergence behavior improves. Since all the information regarding uncertainty quantification is preserved, all the different types of Pareto fronts that exist in the probabilistic framework (e.g. mean value Pareto, mean value penalty Pareto, etc.) are shown to be generated a posteriori. An adaptive sampling approach and parallel computing (in both the uncertainty and optimization algorithms) are shown to have several fold speed-up in selecting optimal solutions under uncertainty.

Originality/value

There are no existing algorithms that use the full probabilistic distribution to guide the optimizer. The method presented herein bases its sorting on real function evaluations, not merely measures (i.e. mean of the probabilistic distribution) that potentially do not exist.

Details

Engineering Computations, vol. 30 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2019

Hui Lü, Kun Yang, Wen-bin Shangguan, Hui Yin and DJ Yu

The purpose of this paper is to propose a unified optimization design method and apply it to handle the brake squeal instability involving various uncertainties in a unified…

Abstract

Purpose

The purpose of this paper is to propose a unified optimization design method and apply it to handle the brake squeal instability involving various uncertainties in a unified framework.

Design/methodology/approach

Fuzzy random variables are taken as equivalent variables of conventional uncertain variables, and a unified response analysis method is first derived based on level-cut technique, Taylor expansion and central difference scheme. Next, a unified reliability analysis method is developed by integrating the unified response analysis and fuzzy possibility theory. Finally, based on the unified reliability analysis method, a unified reliability-based optimization model is established, which is capable of optimizing uncertain responses in a unified way for different uncertainty cases.

Findings

The proposed method is extended to perform squeal instability analysis and optimization involving various uncertainties. Numerical examples under eight uncertainty cases are provided and the results demonstrate the effectiveness of the proposed method.

Originality/value

Most of the existing methods of uncertainty analysis and optimization are merely effective in tackling one uncertainty case. The proposed method is able to handle the uncertain problems involving various types of uncertainties in a unified way.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 November 2013

Pietro Marco Congedo, Gianluca Geraci, Rémi Abgrall, Valentino Pediroda and Lucia Parussini

– This paper aims to deal with an efficient strategy for robust optimization when a large number of uncertainties are taken into account.

Abstract

Purpose

This paper aims to deal with an efficient strategy for robust optimization when a large number of uncertainties are taken into account.

Design/methodology/approach

ANOVA analysis is used in order to perform a variance-based decomposition and to reduce stochastic dimension based on an appropriate criterion. A massive use of metamodels allows reconstructing response surfaces for sensitivity indexes in the design variables plan. To validate the proposed approach, a simplified configuration, an inverse problem on a 1D nozzle flow, is solved and the performances compared to an exact Monte Carlo reference solution. Then, the same approach is applied to the robust optimization of a turbine cascade for thermodynamically complex flows.

Findings

First, when the stochastic dimension is reduced, the error on the variance between the reduced and the complete problem was found to be roughly estimated by the quantity (1− TSI )×100, where TSI is the summation of TSI concerning the variables respecting the TSI criterion. Second, the proposed strategy allowed obtaining a converged Pareto front with a strong reduction of computational cost by preserving the same accuracy.

Originality/value

Several articles exist in literature concerning robust optimization but very few dealing with a global approach for solving optimization problem affected by a large number of uncertainties. Here, a practical and efficient approach is proposed that could be applied also to realistic problems in engineering field.

Details

Engineering Computations, vol. 30 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 July 2022

Debiao Meng, Shiyuan Yang, Chao He, Hongtao Wang, Zhiyuan Lv, Yipeng Guo and Peng Nie

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex…

Abstract

Purpose

As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex engineering systems, not only because of the accurate evaluation of the impact of uncertain factors but also the relatively good balance between economy and safety of performance. However, with the increasing complexity of engineering technology, the proposed RBMDO method gradually cannot effectively solve the higher nonlinear coupled multidisciplinary uncertainty design optimization problems, which limits the engineering application of RBMDO. Many valuable works have been done in the RBMDO field in recent decades to tackle the above challenges. This study is to review these studies systematically, highlight the research opportunities and challenges, and attempt to guide future research efforts.

Design/methodology/approach

This study presents a comprehensive review of the RBMDO theory, mainly including the reliability analysis methods of different uncertainties and the decoupling strategies of RBMDO.

Findings

First, the multidisciplinary design optimization (MDO) preliminaries are given. The basic MDO concepts and the corresponding mathematical formulas are illustrated. Then, the procedures of three RBMDO methods with different reliability analysis strategies are introduced in detail. These RBMDO methods were proposed for the design optimization problems under different uncertainty types. Furtherly, an optimization problem for a certain operating condition of a turbine runner blade is introduced to illustrate the engineering application of the above method. Finally, three aspects of future challenges for RBMDO, namely, time-varying uncertainty analysis; high-precision surrogate models, and verification, validation and accreditation (VVA) for the model, are discussed followed by the conclusion.

Originality/value

The scope of this study is to introduce the RBMDO theory systematically. Three commonly used RBMDO-SORA methods are reviewed comprehensively, including the methods' general procedures and mathematical models.

Article
Publication date: 16 April 2018

Qi Zhou, Xinyu Shao, Ping Jiang, Tingli Xie, Jiexiang Hu, Leshi Shu, Longchao Cao and Zhongmei Gao

Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly…

Abstract

Purpose

Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly degrade the overall performance of engineering systems and change the feasibility of the obtained solutions. This paper aims to propose a multi-objective robust optimization approach based on Kriging metamodel (K-MORO) to obtain the robust Pareto set under the interval uncertainty.

Design/methodology/approach

In K-MORO, the nested optimization structure is reduced into a single loop optimization structure to ease the computational burden. Considering the interpolation uncertainty from the Kriging metamodel may affect the robustness of the Pareto optima, an objective switching and sequential updating strategy is introduced in K-MORO to determine (1) whether the robust analysis or the Kriging metamodel should be used to evaluate the robustness of design alternatives, and (2) which design alternatives are selected to improve the prediction accuracy of the Kriging metamodel during the robust optimization process.

Findings

Five numerical and engineering cases are used to demonstrate the applicability of the proposed approach. The results illustrate that K-MORO is able to obtain robust Pareto frontier, while significantly reducing computational cost.

Practical implications

The proposed approach exhibits great capability for practical engineering design optimization problems that are multi-objective and constrained and have uncertainties.

Originality/value

A K-MORO approach is proposed, which can obtain the robust Pareto set under the interval uncertainty and ease the computational burden of the robust optimization process.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 July 2015

Hyeong-Uk Park, Jae-Woo Lee, Joon Chung and Kamran Behdinan

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization

Abstract

Purpose

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization methods. Reliability-Based Design Optimization (RBDO), Possibility-Based Design Optimization (PBDO) and Robust Design Optimization (RDO) methods were developed to handle uncertainties of design optimization. The RBDO method is found suitable for uncertain parameters when sufficient information is available. On the other hand, the PBDO method is proposed when uncertain parameters have insufficient information. The RDO method can apply to both cases. The RBDO, PBDO and RDO methods were considered with the Multidisciplinary Design Optimization (MDO) method to generate conservative design results when low fidelity analysis tools are used.

Design/methodology/approach

Methods combining MDO with RBDO, PBDO and RDO were developed and have been applied to a numerical analysis and an aircraft conceptual design. This research evaluates and compares the characteristics of each method in both cases.

Findings

The RBDO result can be improved when the amount of data concerning uncertain parameters is increased. Conversely, increasing information regarding uncertain parameters does not improve the PBDO result. The PBDO provides a conservative result when less information about uncertain parameters is available.

Research limitations/implications

The formulation of RDO is more complex than other methods. If the uncertainty information is increased in aircraft conceptual design case, the accuracy of RBDO will be enhanced.

Practical implications

This research increases the probability of a feasible design when it considers the uncertainty. This result gives more practical optimization results on a conceptual design level for fabrication.

Originality/value

It is RBDO, PBDO and RDO methods combined with MDO that satisfy the target probability when the uncertainties of low fidelity analysis models are considered.

Article
Publication date: 17 October 2008

Li‐Ping He and Fu‐Zheng Qu

To survey the approaches to design optimization based on possibility theory and evidence theory comparatively, as well as their prominent characteristics mainly for epistemic…

Abstract

Purpose

To survey the approaches to design optimization based on possibility theory and evidence theory comparatively, as well as their prominent characteristics mainly for epistemic uncertainty.

Design/methodology/approach

Owing to uncertainties encountered in engineering design problems and limitations of the conventional probabilistic approach in handling the impreciseness of data or knowledge, the possibility‐based design optimization (PBDO), evidence‐based design optimization (EBDO) and their integrated approaches are investigated from the viewpoints of computational development and performance improvement. After that, this paper discusses the fusion technologies and an example of integrated approach in reliability to reveal the qualitative value and efficiency.

Findings

It is recognized that more conservative results are obtained with both PBDO and EBDO, which may be appropriate for design against catastrophic failure compared with the probability‐based design. Furthermore, the EBDO design may be less conservative compared with the PBDO design.

Research limitations/implications

How to perfect already‐existing integration approaches in a more generally analytical framework is still an active domain of research.

Practical implications

The paper is a holistic reference for design engineers and industry managers.

Originality/value

The paper is focused on decomposition strategies and fusion technologies, especially addressing epistemic uncertainty for large‐scale and complex systems when statistical data are scarce or incomplete.

Details

Kybernetes, vol. 37 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 October 2018

Lei Wang, Haijun Xia, Yaowen Yang, Yiru Cai and Zhiping Qiu

The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval…

Abstract

Purpose

The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval uncertainties of load and material parameters based on the technology of 3D printing or additive manufacturing.

Design/methodology/approach

First, the uncertainty quantification analysis is accomplished by interval Taylor extension to determine boundary rules of concerned displacement responses. Based on the interval interference theory, a novel reliability index, named as the optimization feature distance, is then introduced to construct non-probabilistic reliability constraints. To circumvent convergence difficulties in solving large-scale variable optimization problems, the gradient-based method of moving asymptotes is also used, in which the sensitivity expressions of the present reliability measurements with respect to design variables are deduced by combination of the adjoint vector scheme and interval mathematics.

Findings

The main findings of this paper should lie in that new non-probabilistic reliability index, i.e. the optimization feature distance which is defined and further incorporated in continuum topology optimization issues. Besides, a novel concurrent design strategy under consideration of macro-micro integration is presented by using the developed RBTO methodology.

Originality/value

Uncertainty propagation analysis based on the interval Taylor extension method is conducted. Novel reliability index of the optimization feature distance is defined. Expressions of the adjoint vectors between interval bounds of displacement responses and the relative density are deduced. New NRBTO method subjected to continuum structures is developed and further solved by MMA algorithms.

Article
Publication date: 2 May 2017

Yalin Pan, Jun Huang, Feng Li and Chuxiong Yan

The purpose of this paper is to propose a robust optimization strategy to deal with the aerodynamic optimization issue, which does not need a large sum of information on the…

Abstract

Purpose

The purpose of this paper is to propose a robust optimization strategy to deal with the aerodynamic optimization issue, which does not need a large sum of information on the uncertainty of input parameters.

Design/methodology/approach

Interval numbers were adopted to describe the uncertain input, which only requires bounds and does not necessarily need probability distributions. Based on the method, model outputs were also regarded as intervals. To identify a better solution, an order relation was used to rank interval numbers.

Findings

Based on intervals analysis method, the uncertain optimization problem was transformed into nested optimization. The outer optimization was used to optimize the design vector, and inner optimization was used to compute the interval of model outputs. A flying wing aircraft was used as a basis for uncertainty optimization through the suggested optimization strategy, and optimization results demonstrated the validity of the method.

Originality/value

In aircraft conceptual design, the uncertain information of design parameters are often insufficient. Interval number programming method used for uncertainty analysis is effective for aerodynamic robust optimization for aircraft conceptual design.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2011

Amir Albadvi and Hamidreza Koosha

The main purpose of this research is to find an optimal allocation of marketing budgets which maximizes customer equity in an uncertain environment. Since markets are naturally…

2101

Abstract

Purpose

The main purpose of this research is to find an optimal allocation of marketing budgets which maximizes customer equity in an uncertain environment. Since markets are naturally uncertain environments, the aim is to incorporate uncertainty into the model.

Design/methodology/approach

Researchers have developed a mathematical programming model which employs customer equity as an objective function in order to allocate marketing budgets. The robust optimization approach is employed to tackle the proposed model, which deals with uncertainty.

Findings

The solution of the robust model is shown to be feasible and satisfactory in all uncertain situations. The robust solutions (of the presented model) are stable in volatile situations; while if the solution of deterministic models is used, it may be suboptimal or even infeasible. Sensitivity analysis of the deterministic solution only describes how stable is the suggested solution, but a robust optimization approach always provides a stable solution.

Research limitations/implications

The presented model will be most effective where uncertainty is high; if uncertainty is not a matter of concern or estimates are reliable, deterministic models are also effective.

Practical implications

Companies periodically decide on marketing budgets in order to achieve predefined marketing targets in future periods. The results of this research may be useful and applicable in marketing departments for allocating marketing budgets, especially in uncertain environments.

Originality/value

The main contribution of this research lies in providing an approach to allocate marketing budgets in uncertain environments. Unlike previous studies, the presented method takes into account the uncertainty of parameters in a systematic way. Hence, in case of high degrees of uncertainty, the use of robust optimization is strictly recommended.

Details

Management Decision, vol. 49 no. 4
Type: Research Article
ISSN: 0025-1747

Keywords

1 – 10 of over 14000