Search results

1 – 10 of 69
Article
Publication date: 2 November 2015

Yanchuang Cao, Junjie Rong, Lihua Wen and Jinyou Xiao

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time…

215

Abstract

Purpose

The purpose of this paper is to develop an easy-to-implement and accurate fast boundary element method (BEM) for solving large-scale elastodynamic problems in frequency and time domains.

Design/methodology/approach

A newly developed kernel-independent fast multipole method (KIFMM) is applied to accelerating the evaluation of displacements, strains and stresses in frequency domain elastodynamic BEM analysis, in which the far-field interactions are evaluated efficiently utilizing equivalent densities and check potentials. Although there are six boundary integrals with unique kernel functions, by using the elastic theory, the authors managed to accelerate these six boundary integrals by KIFMM with the same kind of equivalent densities and check potentials. The boundary integral equations are discretized by Nyström method with curved quadratic elements. The method is further used to conduct the time-domain analysis by using the frequency-domain approach.

Findings

Numerical results show that by the fast BEM, high accuracy can be achieved and the computational complexity is brought down to linear. The performance of the present method is further demonstrated by large-scale simulations with more than two millions of unknowns in the frequency domain and one million of unknowns in the time domain. Besides, the method is applied to the topological derivatives for solving elastodynamic inverse problems.

Originality/value

An efficient KIFMM is implemented in the acceleration of the elastodynamic BEM. Combining with the Nyström discretization based on quadratic elements and the frequency-domain approach, an accurate and highly efficient fast BEM is achieved for large-scale elastodynamic frequency domain analysis and time-domain analysis.

Article
Publication date: 20 December 2018

Yuan Li, J. Zhang, Yudong Zhong, Xiaomin Shu and Yunqiao Dong

The Convolution Quadrature Method (CQM) has been widely applied to solve transient elastodynamic problems because of its stability and generality. However, the CQM suffers from…

Abstract

Purpose

The Convolution Quadrature Method (CQM) has been widely applied to solve transient elastodynamic problems because of its stability and generality. However, the CQM suffers from the problems of huge memory requirement in case of direct implementation in time domain or CPU time in case of its reformulation in Laplace domain. The purpose of this paper is to combine the CQM with the pseudo-initial condition method (PICM) to achieve a good balance between memory requirement and CPU time.

Design/methodology/approach

The combined methods first subdivide the whole analysis into a few sub-analyses, which is dealt with the PICM, namely, the results obtained by previous sub-analysis are used as the initial conditions for the next sub-analysis. In each sub-analysis, the time interval is further discretized into a number of sub-steps and dealt with the CQM. For non-zero initial conditions, the pseudo-force method is used to transform them into equivalent body forces. The boundary face method is employed in the numerical implementation. Three examples are analyzed. Results are compared with analytical solutions or FEM results and the results of reformulated CQM.

Findings

Results demonstrate that the computation time and the storage requirement can be reduced significantly as compared to the CQM, by using the combined approach.

Originality/value

The combined methods can be successfully applied to the problems of long-time dynamic response, which requires a large amount of computer memory when CQM is applied, while preserving the CQM stability. If the number of time steps is high, then the accuracy of the proposed approach can be deteriorated because of the pseudo-force method.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Yixiong Wei, Qifu Wang, Yunbao Huang, Yingjun Wang and Zhaohui Xia

The purpose of this paper is to present a novel strategy used for acceleration of free-vibration analysis, in which the hierarchical matrices structure and Compute Unified Device…

Abstract

Purpose

The purpose of this paper is to present a novel strategy used for acceleration of free-vibration analysis, in which the hierarchical matrices structure and Compute Unified Device Architecture (CUDA) platform is applied to improve the performance of the traditional dual reciprocity boundary element method (DRBEM).

Design/methodology/approach

The DRBEM is applied in forming integral equation to reduce complexity. In the procedure of optimization computation, ℋ-Matrices are introduced by applying adaptive cross-approximation method. At the same time, this paper proposes a high-efficiency parallel algorithm using CUDA and the counterpart of the serial effective algorithm in ℋ-Matrices for inverse arithmetic operation.

Findings

The analysis for free-vibration could achieve impressive time and space efficiency by introducing hierarchical matrices technique. Although the serial algorithm based on ℋ-Matrices could obtain fair performance for complex inversion operation, the CUDA parallel algorithm would further double the efficiency. Without much loss in accuracy according to the examination of the numerical example, the relative error appeared in approximation process can be fixed by increasing degrees of freedoms or introducing certain amount of internal points.

Originality/value

The paper proposes a novel effective strategy to improve computational efficiency and decrease memory consumption of free-vibration problems. ℋ-Matrices structure and parallel operation based on CUDA are introduced in traditional DRBEM.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2019

Leticia Col Debella, Carolina Castro Cittadin, Marcos Arndt and Roberto Dalledone Machado

This paper aims to present an adaptive approach of the generalized finite element method (GFEM) for transient dynamic analysis of bars and trusses. The adaptive GFEM, previously…

Abstract

Purpose

This paper aims to present an adaptive approach of the generalized finite element method (GFEM) for transient dynamic analysis of bars and trusses. The adaptive GFEM, previously proposed for free vibration analysis, is used with the modal superposition method to obtain precise time-history responses.

Design/methodology/approach

The adaptive GFEM is applied to the transient analysis of bars and trusses. To increase the precision of the results and computational efficiency, the modal matrix is responsible for the decoupling of the dynamic equilibrium equations in the modal superposition method, which is used with only the presence of the problem’s most preponderant modes of vibration. These modes of vibration are identified by a proposed coefficient capable of indicating the influence of each mode on the transient response.

Findings

The proposed approach leads to more accurate results of displacement, velocity and acceleration when compared to the traditional finite element method.

Originality/value

In this paper, the application of the adaptive GFEM to the transient analysis of bars and trusses is presented for the first time. A methodology of identification of the preponderant modes to be retained in the modal matrix is proposed to improve the quality of the solution. The examples showed that the method has a strong potential to solve dynamic analysis problems, as the approach had already proved to be efficient in the modal analysis of different framed structures. A simple way to perform h-refinement of truss elements to obtain reference solutions for dynamic problems is also proposed.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1997

A. Dutta and C.V. Ramakrishnan

Presents a method of obtaining an optimal mesh in the finite element analysis of two‐dimensional linear elastodynamic problems under transient dynamic loading, which is based on a…

Abstract

Presents a method of obtaining an optimal mesh in the finite element analysis of two‐dimensional linear elastodynamic problems under transient dynamic loading, which is based on a generalization of the Z‐Z criterion for discretization error estimation for time‐dependent problems. The optimal mesh limits the error due to discretization within a prescribed value, and studies of all other possible errors involved in finite element transient dynamic analysis are carried out systematically. Also proposes methods to study and limit the modal truncation error. Numerous examples show the capabilities of the proposed methods and the importance of the optimal mesh and modal truncation error in finite element transient dynamic analysis.

Details

Engineering Computations, vol. 14 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1991

PETER BETTESS and JACQUELINE A. BETTESS

Survey of period infinite element developments The first infinite elements for periodic wave problems, as stated in Part 1, were developed by Bettess and Zienkiewicz, the earliest…

Abstract

Survey of period infinite element developments The first infinite elements for periodic wave problems, as stated in Part 1, were developed by Bettess and Zienkiewicz, the earliest publication being in 1975. These applications were of ‘decay function’ type elements and were used in surface waves on water problems. This was soon followed by an application by Saini et al., to dam‐reservoir interaction, where the waves are pressure waves in the water in the reservoir. In this case both the solid displacements and the fluid pressures are complex valued. In 1980 to 1983 Medina and co‐workers and Chow and Smith successfully used quite different methods to develop infinite elements for elastic waves. Zienkiewicz et al. published the details of the first mapped wave infinite element formulation, which they went on to program, and to use to generate results for surface wave problems. In 1982 Aggarwal et al. used infinite elements in fluid‐structure interaction problems, in this case plates vibrating in an unbounded fluid. In 1983 Corzani used infinite elements for electric wave problems. This period also saw the first infinite element applications in acoustics, by Astley and Eversman, and their development of the ‘wave envelope’ concept. Kagawa applied periodic infinite wave elements to Helmholtz equation in electromagnetic applications. Pos used infinite elements to model wave diffraction by breakwaters and gave comparisons with laboratory photogrammetric measurements of waves. Good agreement was obtained. Huang also used infinite elements for surface wave diffraction problems. Davies and Rahman used infinite elements to model wave guide behaviour. Moriya developed a new type of infinite element for Helmholtz problem. In 1986 Yamabuchi et al. developed another infinite element for unbounded Helmholtz problems. Rajapalakse et al. produced an infinite element for elastodynamics, in which some of the integrations are carried out analytically, and which is said to model correctly both body and Rayleigh waves. Imai et al. gave further applications of infinite elements to wave diffraction, fluid‐structure interaction and wave force calculations for breakwaters, offshore platforms and a floating rectangular caisson. Pantic et al. used infinite elements in wave guide computations. In 1986 Cao et al. applied infinite elements to dynamic interaction of soil and pile. The infinite element is said to be ‘semi‐analytical’. Goransson and Davidsson used a mapped wave infinite element in some three dimensional acoustic problems, in 1987. They incorporated the infinite elements into the ASKA code. A novel application of wave infinite elements to photolithography simulation for semiconductor device fabrication was given by Matsuzawa et al. They obtained ‘reasonably good’ agreement with observed photoresist profiles. Häggblad and Nordgren used infinite elements in a dynamic analysis of non‐linear soil‐structure interaction, with plastic soil elements. In 1989 Lau and Ji published a new type of 3‐D infinite element for wave diffraction problems. They gave good results for problems of waves diffracted by a cylinder and various three dimensional structures.

Details

Engineering Computations, vol. 8 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2605

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2000

A. Dutta and C.V. Ramakrishnan

Design sensitivities of plates and shells under transient dynamic loads with constraints on displacements and stresses are likely to be highly erroneous if proper care is not…

Abstract

Design sensitivities of plates and shells under transient dynamic loads with constraints on displacements and stresses are likely to be highly erroneous if proper care is not taken in selecting appropriate finite element mesh and time step size to be used in the analysis. An accurate value of design derivative is assured if an optimal mesh coupled with a reasonably fine time step size is used. The optimal mesh can be obtained iteratively and a number of examples are solved to demonstrate the importance of controlling discretization errors in space and time.

Details

Engineering Computations, vol. 17 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2002

S.T. Lie and G. Yu

The time domain BEM/FEM coupling procedure is applied to 2‐D multi‐domain fluid–structure interaction problems. The fluid domain is acoustic and modeled by taking advantage of the…

Abstract

The time domain BEM/FEM coupling procedure is applied to 2‐D multi‐domain fluid–structure interaction problems. The fluid domain is acoustic and modeled by taking advantage of the BEM scheme that is suitable to either finite or infinite domains. The structure is modeled by elastodynamic finite elements that can be either linear or nonlinear. The input impact, which can be either plane waves or non‐plane waves, can either be forces acting directly on the fluid–structure system or be explosion sources in the fluid. The far field or near field explosion sources, which are difficult to be simulated for finite element analysis, are very easy to be simulated here by boundary element modeling as internal sources. The stability problem is solved by using the linear θ method, which makes the BEM scheme stable. The numerical results are compared with analytical solutions for two examples.

Details

Engineering Computations, vol. 19 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1997

E. Siebrits and A.P. Peirce

Direct and indirect time marching boundary element methods often become numerically unstable. Evidence of, and reasons for, these instabilities is provided in this paper. Two new…

Abstract

Direct and indirect time marching boundary element methods often become numerically unstable. Evidence of, and reasons for, these instabilities is provided in this paper. Two new time stepping schemes are presented, both of which are more stable than the existing standard schemes available. In particular, we introduce the Half‐step scheme, which is more accurate and far more stable than existing methods. This scheme, which is demonstrated on a simple crack problem for the displacement discontinuity method, can also be introduced into the direct boundary element method. Implementation of the Half‐step scheme into existing boundary element codes will allow researchers to attack more challenging problems than before.

Details

Engineering Computations, vol. 14 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 69