Search results

1 – 10 of over 13000
Article
Publication date: 26 January 2010

Shanchun Wei, Hongbo Ma, Tao Lin and Shanben Chen

Recognition and guidance of initial welding position (IWP) is one of the most important steps of automatic welding process, also a key technology of autonomous welding process…

Abstract

Purpose

Recognition and guidance of initial welding position (IWP) is one of the most important steps of automatic welding process, also a key technology of autonomous welding process. The purpose of this paper is to advance an improved Harris Algorithm and grey scale scanning method (GSCM) to raise the precision of image processing.

Design/methodology/approach

Through the configuration of “single camera and double positions,” a new set of image processing algorithms is adopted to extract feature points by using the pattern of rough location and subtle extraction, so as to restructure three‐dimensional information to guide robot move to IWP in the practical welding environment.

Findings

Experiments showed that mean square errors (MSEs) in X, Y, Z‐directions for both flat butt joint and flat flange are 0.4491, 0.8178, 1.4797, and 0.5398, 0.4861, 1.1071 mm, respectively.

Research limitations/implications

It has a limitation in providing guidance for only one step, and would be more accurate if fractional steps are adopted.

Practical implications

Guidance experiments of IWPs on oxidant tank's simulating parts are carried out, whose success rate is up to 95 percent and MSEs are 0.7407, 0.7971, and 1.3429 mm. It meets the demands of continuous and automatic welding process.

Originality/value

Improved Harris Algorithm and GSCM are advanced to raise the precision of image processing which influenced guidance precision most.

Details

Sensor Review, vol. 30 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 October 2014

He Xu, Yan Xu, Hu Fu, Yixian Xu, X.Z. Gao and Khalil Alipour

The purpose of this paper is to explore a novel control approach for swift and accurate positioning and tracking of a mobile robot. Coordinated movement of the mobile robot-body…

Abstract

Purpose

The purpose of this paper is to explore a novel control approach for swift and accurate positioning and tracking of a mobile robot. Coordinated movement of the mobile robot-body and chameleon-inspired binocular “negative correlation” visual system (CIBNCVS) with neck has rarely been considered in conventional mobile robot design. However, it is vital in swift and accurate positioning and tracking of the target. Consequently, it is valuable to find an optimized method where the robot-body, the biomimetic eyes and neck could achieve optimal coordinated movement.

Design/methodology/approach

Based on a wheeled mobile robot, a biomimetic dual Pan–Tilt–Zoom visual system with neck is constructed. The cameras can rely on the unique “negative correlation” mode of chameleon vision, and cooperate with neck, achieving swift search of the 160° scope in front of the robot. Genetic algorithm is used to obtain optimal rotation of the neck and robot-body. Variable resolution targeting is also applied for accurate aiming. Using these two approaches, we can achieve efficient targeting with low energy consumption. Particle filter algorithm is further utilized for real-time tracking.

Findings

In the proposed approach, swift and accurate positioning and tracking of the target can be obtained. The rationality of the approach is verified by experiments on flat and sandy terrains with satisfactory results.

Originality/value

This paper proposes a novel control approach for wheeled mobile robots, which achieves coordinated movement of the robot-body and CIBNCVS with neck concerning time and energy saving in the process of swift and accurate tracking.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2016

Jian Le, Hua Zhang and Jin-wen Li

This study aims to improve the welding quality and efficiency, and an algorithm should be designed to realize tracking space-curved fillet weld joints.

Abstract

Purpose

This study aims to improve the welding quality and efficiency, and an algorithm should be designed to realize tracking space-curved fillet weld joints.

Design/methodology/approach

Fillet weld joints tracking based on the two wheels and the horizontal slider coordinated movement has been studied. The method of pattern recognition is used to identify the height deviation, and the analysis of the accuracy corresponding to recognizing height deviations has been researched. The proportional control algorithm is used to control the vertical and horizontal sliders movement, so fillet weld joints tracking in the height direction has been achieved. Based on wheels and vertical and horizontal sliders coordinated movement, the algorithm of space-curved fillet weld joints tracking has been researched.

Findings

Some experiments have been done, and experimental results show that the welding robot can track space-curved fillet weld joints with high accuracy and good reliability.

Research limitations/implications

The welding robot can improve the welding quality and efficiency.

Practical implications

The welding robot can track fillet weld joints in ship panels, and it was shown that the welding robot could track space-curved fillet weld joints with high accuracy and good reliability.

Social implications

The welding robot has many industrial and social applications.

Originality/value

There are various forms of fillet weld joints in the industry, and the fillet weld is curved in the space. Experimental results show that the welding robot can track space-curved fillet weld joints with good stability and high precision.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 April 2020

Yu Yan, Wei Jiang, Dehua Zou, Wusheng Quan, Hong Jun Li, YunFei Lei and Zhan fan Zhou

In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural…

Abstract

Purpose

In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural environment on the power system, which will lead to the occurrence of different faults in the distribution network and directly affect the normal operation of the power grid.

Design/methodology/approach

The purpose of this study is to solve the problems of labor intensity, high risk and low efficiency of distribution network manual maintenance operation, this paper proposed a new configuration of the live working robot for distribution network maintenance, the robot is equipped with dual working arms through the mobile platform, which can realize the coordination movement, the autonomous reorganization and replacement of the end tools, respectively, so as the robot power distribution maintenance function such as stripping, trimming, wiring and the operation control problem of the distribution network-robot with small arms and in small operation space can be realized.

Findings

To effective elimination or reduce the adverse effects of the internal forces in the closed chain between the working object and manipulator under the typical task of the 10 kV distribution network, this paper has established the robot coordinated control dynamics model in the closed-chain between the dual-working object and proposed the dynamic distribution method of closed-chain internal force and the effectiveness has been proved by simulation experiments and 10 kV field operation.

Originality/value

The force-position hybrid control can realize the mutual compensation of force and position so as to effectively reduce the internal force in the closed chain. Finally, the engineering practicality of the method is verified by field operation experiment, the effective implementation of this control method greatly improves the robot working efficiency and the operation reliability, the promotion and application of the control method have great theoretical and practical value and maintenance management system, so as to achieve automation of electric.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 October 2004

Brian Rooks

ABB has launched a new robot controller, the fifth generation IRC5. One of its major features is MultiMove, a function that enables fully coordinated control of up to 36 axes…

Abstract

ABB has launched a new robot controller, the fifth generation IRC5. One of its major features is MultiMove, a function that enables fully coordinated control of up to 36 axes, equal to four six‐axis robots plus work positioners or other servo devices. This opens up new application areas with a combination of handling and processing robots, including balanced welding and multiple robot manipulation to increase lifting capacity and/or protect large flimsy workpieces. Benefits are higher relative speeds, minimal in‐cycle waiting and improved weld quality. Other features of the IRC5 are its modularity, with a logical split of control and axis drive functions and simple two‐cable connection, and a completely new ergonomically designed interface unit running under Windows CE.NET with full colour touch screen and Windows menus and icons.

Details

Industrial Robot: An International Journal, vol. 31 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 March 2022

Valeriia Izhboldina and Igor Lebedev

The successful application of the group of unmanned aerial vehicles (UAVs) in the tasks of monitoring large areas is becoming a promising direction in modern robotics. This paper…

Abstract

Purpose

The successful application of the group of unmanned aerial vehicles (UAVs) in the tasks of monitoring large areas is becoming a promising direction in modern robotics. This paper aims to study the tasks related to the control of the UAV group while performing a common mission.

Design/methodology/approach

This paper discusses the main tasks solved in the process of developing an autonomous UAV group. During the survey, five key tasks of group robotics were investigated, namely, UAV group control, path planning, reconfiguration, task assignment and conflict resolution. Effective methods for solving each problem are presented, and an analysis and comparison of these methods are carried out. Several specifics of various types of UAVs are also described.

Findings

The analysis of a number of modern and effective methods showed that decentralized methods have clear advantages over centralized ones, since decentralized methods effectively perform the assigned mission regardless of on the amount of resources used. As for the method of planning the group movement of UAVs, it is worth choosing methods that combine the algorithms of global and local planning. This combination eliminates the possibility of collisions not only with static and dynamic obstacles, but also with other agents of the group.

Originality/value

The results of scientific research progress in the tasks of UAV group control have been summed up.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 9 August 2019

Jun Zhong and Ruqi Ma

Jumping robots with coordinated multiple legs have been a hot research subject during the past years because of their excellent abilities in fast moving and obstacle-climbing…

Abstract

Purpose

Jumping robots with coordinated multiple legs have been a hot research subject during the past years because of their excellent abilities in fast moving and obstacle-climbing. However, dynamics of jumping process of these coordinated legged robots are complex because of collisions between coordinated legs and the ground. This paper aims to analyze features of jumping process and to present the kinematic and dynamic models of a novel sole-type quadruped jumping robot with variable coordinated joints.

Design/methodology/approach

A complete jumping period of is divided into several subphases according to contact status of different coordinated legs to the ground. Continuous dynamics and discrete dynamics are established in different subphases. Simulations are performed in MATLAB software and ADAMS environment.

Findings

Comparison between two-set simulated results acquired from ADAMS and MATLAB demonstrates the validity of kinematic and dynamic equations.

Originality/value

The established dynamics establish the foundation of further research in motion planning and controller design of coordinated multiple legs.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 April 2018

Bingwei Gao and Wenlong Han

To control one of the joints during the actual movement of the hydraulically driven quadruped robot, all the other joints in the leg need to be locked. Once the joints are…

Abstract

Purpose

To control one of the joints during the actual movement of the hydraulically driven quadruped robot, all the other joints in the leg need to be locked. Once the joints are unlocked, there is a coupling effect among the joints. Therefore, during the normal exercise of the robot, the movement of each joint is affected by the coupling of other joints. This brings great difficulties to the coordinated motion control of the multi-joints of the robot. Therefore, it is necessary to reduce the influence of the coupling of the hydraulically driven quadruped robot.

Design/methodology/approach

To solve the coupling problem with the joints of the hydraulic quadruped robot, based on the principle of mechanism dynamics and hydraulic control, the dynamic mathematical model of the single leg mechanism of the hydraulic quadruped robot is established. On this basis, the coupling dynamics model of the two joints of the thigh and the calf is derived. On the basis of the multivariable decoupling theory, a neural network (NN) model reference decoupling controller is designed.

Findings

The simulation and prototype experiment are carried out between the thigh joint and the calf joint of the hydraulic quadruped robot, and the results show that the proposed NN model reference decoupling control method is effective, and this method can reduce the cross-coupling between the thigh and the calf and improve the dynamic characteristics of the single joint of the leg.

Practical implications

The proposed method provides technical support for the mechanical–hydraulic cross-coupling among the joints of the hydraulic quadruped robot, achieving coordinated movement of multiple joints of the robot and promoting the performance and automation level of the hydraulic quadruped robot.

Originality/value

On the basis of the theory of multivariable decoupling, a new decoupling control method is proposed, in which the mechanical–hydraulic coupling is taken as the coupling behavior of the hydraulic foot robot. The method reduces the influence of coupling of system, improves the control precision, realizes the coordinated movement among multiple joints and promotes the popularization and use of the hydraulically driven quadruped robot.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 May 2021

Zhiwen Hou and Fanliang Bu

The purpose of this study is to establish an effective tracking algorithm for small unmanned aerial vehicles (UAVs) based on interacting multiple model (IMM) to take timely…

Abstract

Purpose

The purpose of this study is to establish an effective tracking algorithm for small unmanned aerial vehicles (UAVs) based on interacting multiple model (IMM) to take timely countermeasures against illegal flying UAVs.

Design/methodology/approach

In this paper, based on the constant velocity model (CV), the maneuvering adaptive current statistical model (CS) and the angular velocity adaptive three-dimensional (3D) fixed center constant speed rate constant steering rate model, a small UAV tracking algorithm based on adaptive interacting multiple model (AIMM-UKF) is proposed. In addition, an adaptive robust filter is added to each model of the algorithm. The linear Kalman filter algorithm is attached to the CV model and the CS model and the unscented Kalman filter algorithm (UKF) is attached to the CSCDR model to solve the nonlinearity of the 3D turning model.

Findings

Monte-Carlo simulation comparison with the other two IMM tracking algorithms shows that in the case of different movement modes and maneuvering strength of the UAV, the AIMM-UKF algorithm makes a good trade-off between the amount of calculation and filtering accuracy, which can maintain more accurate and stable tracking and has strong robustness. At the same time, after testing the actual observation data of the UAV, the results show that the AIMM-UKF algorithm state estimation trajectory can be regarded as an actual trajectory in practical engineering applications, which has good practical value.

Originality/value

This paper presents a new small UAV tracking algorithm based on IMM and the advantages and practicability of this algorithm compared with existing algorithms are proved through experiments.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 July 2023

Jie Sun, X.F. Ge and Yuan Zheng

The research in this paper helps to understand the difference between the Eulerian method and the Lagrangian method in describing the performance of Pelton turbine buckets, so as…

Abstract

Purpose

The research in this paper helps to understand the difference between the Eulerian method and the Lagrangian method in describing the performance of Pelton turbine buckets, so as to improve the design level and design efficiency of the runner.

Design/methodology/approach

This paper used DualSPHysics to calculate the unsteady flow of the Pelton turbine runner bucket and compared it with the mesh-based method to explore the difference between mesh-based and particle-based methods in torque curves, jet flow patterns and pressure characteristics.

Findings

It is noted that the particle-based method is challenging to compare with the mesh-based method concerning accuracy. In addition to better describing the free water film, the particle method also captures many droplets near the water film, but it cannot well describe the negative pressure region on the bucket back and the resulting jet interference after cutting off the jet. Compared with the mesh-based method, the pressure measurement points obtained by the particle-based method generally have shorter periods and violent fluctuations, and the pressure value of some points is underestimated.

Originality/value

This paper helped to calculate the unsteady characteristics of the Pelton turbine by Fluent, CFX and DualSPHysics; exploration jet flow pattern differences between the mesh and meshfree methods; prediction of the flow interference between the bucket back and the jet and the pressure curve of SPH usually has a shorter period and violent fluctuations.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 13000