Search results

1 – 10 of over 5000
Article
Publication date: 14 April 2020

Yu Yan, Wei Jiang, Dehua Zou, Wusheng Quan, Hong Jun Li, YunFei Lei and Zhan fan Zhou

In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural…

Abstract

Purpose

In the long-term network operation, the power distribution network will be subjected to the effects of ultra-high voltage, strong electromagnetic interference and harsh natural environment on the power system, which will lead to the occurrence of different faults in the distribution network and directly affect the normal operation of the power grid.

Design/methodology/approach

The purpose of this study is to solve the problems of labor intensity, high risk and low efficiency of distribution network manual maintenance operation, this paper proposed a new configuration of the live working robot for distribution network maintenance, the robot is equipped with dual working arms through the mobile platform, which can realize the coordination movement, the autonomous reorganization and replacement of the end tools, respectively, so as the robot power distribution maintenance function such as stripping, trimming, wiring and the operation control problem of the distribution network-robot with small arms and in small operation space can be realized.

Findings

To effective elimination or reduce the adverse effects of the internal forces in the closed chain between the working object and manipulator under the typical task of the 10 kV distribution network, this paper has established the robot coordinated control dynamics model in the closed-chain between the dual-working object and proposed the dynamic distribution method of closed-chain internal force and the effectiveness has been proved by simulation experiments and 10 kV field operation.

Originality/value

The force-position hybrid control can realize the mutual compensation of force and position so as to effectively reduce the internal force in the closed chain. Finally, the engineering practicality of the method is verified by field operation experiment, the effective implementation of this control method greatly improves the robot working efficiency and the operation reliability, the promotion and application of the control method have great theoretical and practical value and maintenance management system, so as to achieve automation of electric.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 July 2019

Wei Jiang, Yu Yan, An Zhang, Lianqing Yu, Gan Zuo, Hong Jun Li and Wei Chen

The purpose of this paper is to improve the operation and maintenance intelligence of power systems, and summarize the transmission line robots and their key technologies…

Abstract

Purpose

The purpose of this paper is to improve the operation and maintenance intelligence of power systems, and summarize the transmission line robots and their key technologies. High-voltage power cables are important channels for power transmission systems. Their special geographical environment and harsh natural environment can lead to many different faults. At present, such special operations in dangerous and harsh environments are performed manually, which have not only high labor intensity and low work efficiency but also great personal safety risks.

Design/methodology/approach

For maintenance works that are far away from the tower, power outages are required. With the increasing evaluation of transmission quality and operational safety, and the urgent need for automation and operation of modern power systems, the contradiction between this manual operation and modern high-quality power transmission has become increasingly prominent. An effective method to replace the manual maintenance work is to use the mobile robot to carry the operation manipulator and its end tool, that is, the live maintenance robot.

Findings

Some achievements have been made in the key technologies of live maintenance robots, the work to be done to meet the basic requirements of complex and changeable line environment and practical application. Based on the existing research results of live overhaul robot, the follow-up research will focus on the practical application needs and the frontier of scientific and technological development, and truly realize the human–machine integration between live overhaul robot–human working environment. Only in this way can the robot better serve the operation and maintenance of the power system.

Originality/value

This paper reviews the system platform, operation function, structural characteristics and key technologies involved in the power cable robot, and the combination of live maintenance robots and modern high-tech such as big data and cloud computing is also given, and finally, the future development direction of the special operation robot is pointed out.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 September 2021

Wei Jiang, Yating Shi, Dehua Zou, Hongwei Zhang and Hong Jun Li

The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot

Abstract

Purpose

The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript.

Design/methodology/approach

Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB.

Findings

The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque.

Originality/value

Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 February 2024

Yanghong Li, Yahao Wang, Yutao Chen, X.W. Rong, Yuliang Zhao, Shaolei Wu and Erbao Dong

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high…

Abstract

Purpose

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high load-carrying capacity and dexterity of the robot; on the other hand, the fully autonomous mode is uncontrollable and the teleoperation mode has a high failure rate. Therefore, this study aims to design a distribution network operation robot named Sky-Worker to solve the above two problems.

Design/methodology/approach

The heterogeneous arms of Sky-Worker are driven by hydraulics and electric motors to solve the contradiction between high load-carrying capacity and high flexibility. A human–robot collaborative shared control architecture is built to realize real-time human intervention during autonomous operation, and control weights are dynamically assigned based on energy optimization.

Findings

Simulations and tests show that Sky-Worker has good dexterity while having a high load capacity. Based on Sky-Worker, multiuser tests and practical application experiments show that the designed shared-control mode effectively improves the success rate and efficiency of operations compared with other current operation modes.

Practical implications

The designed heterogeneous dual-arm distribution robot aims to better serve distribution line operation tasks.

Originality/value

For the first time, the integration of hydraulic and motor drives into a distribution network operation robot has achieved better overall performance. A human–robot cooperative shared control framework is proposed for remote live-line working robots, which provides better operation results than other current operation modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 September 2020

Wei Jiang, Dehua Zou, Xiao Zhou, Gan Zuo, Gao Cheng Ye and Hong Jun Li

The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot

Abstract

Purpose

The purpose of this study is to solve the key technical problems of the practical application of electric robots. The UHV multi-split transmission line power cable operation robot is an important equipment to ensure the reliable operation of high voltage lines and is a useful exploration to realize high-quality power transmission. As the robot system platform equipment mature and operation environment gradually become more complex, the double arm coordination motion control in extreme environment becomes one of the main bottleneck for its practical in power system.

Design/methodology/approach

This paper summarizes the key technologies related to power cable robots, and aims at key technical indicators such as operation reliability, operation efficiency and operation quality in the robot’s practical process. The dynamic evolution mechanism of the robot’s mechanical configuration, the multi-physics information fusion algorithm in extreme environments, the robot’s autonomous positioning and its error compensation control, the robot’s robust motion control in extreme environments and the dual-arm force-position hybrid coordination control and the dynamic distribution and elimination mechanism of internal forces in the closed chain between robots and operating objects, all the research methods and solutions of the key technologies are proposed, respectively.

Findings

Finally, a new control architecture for power cable robots in the background of the Ubiquitous Power Internet of Things is proposed so as to manage the operation and maintenance of electric power systems. The above key technologies are a new exploration of the operation and maintenance management of EHV (Extra High Voltage) multi-split transmission lines which have laid a solid theoretical foundation for the power cable robot.

Originality/value

High voltage transmission line is the main channel of power transmission. It is an important means to improve the integration of operation and maintenance management of power system to use robot instead of manual inspection and maintenance of power line, in the promotion and application of electric robot. The authors pay attention to the practicability, and the breakthrough of key technologies of robot is the premise of the practicability of robot. In this paper, the robot operation and control in multi-task and complex scenes are studied. The research and implementation of the main key technologies, such as the dynamic evolution mechanism of robot configuration, the coupling and fusion law of multi physical fields in the extreme electric power environment, the autonomous positioning control of manipulator, the robust control of robot in the super electromagnetic field environment and the cooperative operation control of multi manipulator, are discussed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 July 2022

Joy Iong-Zong Chen, Ping-Feng Huang and Chung Sheng Pi

Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed…

Abstract

Purpose

Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model.

Design/methodology/approach

Certainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment.

Findings

Specifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment.

Originality/value

The work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 February 2023

Josephine Lang

Since new digital micro-credential technologies emerged a decade ago, there has been a rapid rise in micro-credentials in the education landscape. Much has been promised about…

Abstract

Purpose

Since new digital micro-credential technologies emerged a decade ago, there has been a rapid rise in micro-credentials in the education landscape. Much has been promised about these educational technologies, yet there is much confusion by key stakeholders in the digital micro-credential ecosystem. This confusion has led to significant efforts globally to define micro-credentials to ensure quality learning and generate beneficial impacts to learners, employers, education providers and edtech organisations.

Design/methodology/approach

This commentary reviews relevant literature on digital micro-credentials and other alternative credentials to determine how these educational technologies can meet the demands of the Fourth Industrial Revolution to nurture lifelong learning for working learners.

Findings

Universities are being challenged to address the changing needs and uncertainty being introduced by the Fourth and Fifth Industrial Revolutions, particularly with implications for workforce upskilling and lifelong learning. To adapt, universities will need to rethink their roles and shift their institutional mindsets in how they may approach the challenges through mechanisms such as digital micro-credntials.

Research limitations/implications

This paper focuses on the analysis of five policy statements about micro-credentials. While these policy statements represent a sample, there is a representation of Western education-related systems. Thus, they skew the findings towards Western education systems thinking.

Practical implications

Understanding how micro-credentials are being positioned within education-related systems is useful for applying the educational technologies by, for example, universities, learners and employers.

Social implications

Provides an overview of how these educational technologies may provide beneficial impacts for society as it plans to adapt to economic uncertainty and change.

Originality/value

The commentary provides a policy context for the emerging use of micro-credential technologies to examine demands for workforce upskilling.

Details

The International Journal of Information and Learning Technology, vol. 40 no. 5
Type: Research Article
ISSN: 2056-4880

Keywords

Article
Publication date: 1 February 1988

David Macarov

The author argues that we must stop and take a look at what our insistence on human labour as the basis of our society is doing to us, and begin to search for possible…

2392

Abstract

The author argues that we must stop and take a look at what our insistence on human labour as the basis of our society is doing to us, and begin to search for possible alternatives. We need the vision and the courage to aim for the highest level of technology attainable for the widest possible use in both industry and services. We need financial arrangements that will encourage people to invent themselves out of work. Our goal, the article argues, must be the reduction of human labour to the greatest extent possible, to free people for more enjoyable, creative, human activities.

Details

International Journal of Sociology and Social Policy, vol. 8 no. 2/3/4
Type: Research Article
ISSN: 0144-333X

Keywords

Book part
Publication date: 14 December 2023

Esra Sipahi Döngül and Shajara Ul-Durar

The relationship between robots and spirituality in the workplace is an interesting and evolving area of research that could provide important insights into the role of technology…

Abstract

The relationship between robots and spirituality in the workplace is an interesting and evolving area of research that could provide important insights into the role of technology in promoting human well-being and personal growth. Robots are becoming increasingly common in the workplace and their functions in the business world are increasing. The use of robots in the workplace can affect people's spiritual values. Spiritual values such as being successful in their work, providing a sense of purpose and satisfaction, and feeling valued and important are important. The use of robots in the workplace may cause some people to take over many of the tasks that their jobs once did. In this case, employees may feel that their work no longer makes sense and may experience a loss of motivation. The fact that robots don't need the skills and experience of humans can make people feel inadequate in their jobs. However, the use of robots in the workplace can also support people's spiritual values. When robots work with humans, they have responsibilities such as interacting with them, showing empathy, respecting coworkers, and treating humans appropriately. This is important for people's mental and emotional health in the workplace. This approach will help people in the workplace work successfully and happily with robots. The use of robots in the workplace raises moral and ethical questions. In this section, research on the production of artificial intelligence-equipped robots and other intelligent technological machines and their use in organizations is evaluated within the framework of spirituality.

Details

Spirituality Management in the Workplace
Type: Book
ISBN: 978-1-83753-450-0

Keywords

1 – 10 of over 5000