Search results

1 – 10 of over 89000
Book part
Publication date: 16 January 2024

Ayodeji E. Oke and Seyi S. Stephen

Considering the gradual move into the information age, digital technologies have become the new trend in different industries ranging from agriculture, manufacturing…

Abstract

Considering the gradual move into the information age, digital technologies have become the new trend in different industries ranging from agriculture, manufacturing, transportation and banking, among others. The construction industry has also evolved progressively since the last decade to explore and adopt digital transformation considering the immense contribution it has towards productivity. More so, the need to combat global warming has compelled experts to begin to seek new technologies in achieving the green effect. This has led experts and researchers in the industry to seek how digital technologies can help to achieve sustainability and further functional construction. There has been a huge gap as to maximising the impact of digital transformation as many organisations in the industry are still struggling to successfully adopt and implement digital construction. This chapter will help to fill this gap and provide clear insight into how digital can help further sustainable construction.

Details

A Digital Path to Sustainable Infrastructure Management
Type: Book
ISBN: 978-1-83797-703-1

Keywords

Article
Publication date: 26 August 2024

Atul Kumar Singh, Saeed Reza Mohandes, Bankole Osita Awuzie, Temitope Omotayo, V.R. Prasath Kumar and Callum Kidd

This study delves into the challenges obstructing the integration of blockchain-enabled smart contracts (BESC) in the construction industry. Its primary objective is to identify…

Abstract

Purpose

This study delves into the challenges obstructing the integration of blockchain-enabled smart contracts (BESC) in the construction industry. Its primary objective is to identify these barriers and propose a roadmap to streamline BESC adoption, thereby promoting sustainability and resilience in building engineering.

Design/methodology/approach

Employing a unique approach, this study combines the Technology-Organization-Environment-Social (TOE + S) framework with the IF-Delphi-HF-DEMATEL-IFISM methodology. Data is collected through surveys and expert interviews, enabling a comprehensive analysis of BESC implementation barriers.

Findings

The analysis reveals significant hindrances in the construction industry’s adoption of BESC. Key obstacles include economic and market conditions, insufficient awareness and education about blockchain technology among stakeholders, and limited digital technology integration in specific cultural and societal contexts. These findings shed light on the complexities faced by the industry in embracing blockchain solutions.

Originality/value

The research makes a significant contribution by combining the TOE + S framework with the IF-Delphi-HF-DEMATEL-IFISM methodology, resulting in a comprehensive roadmap to address barriers in implementing BESC in Sustainable Construction Projects. Noteworthy for its practicality, this roadmap provides valuable guidance for construction stakeholders. Its impact extends beyond the industry, influencing both academic discourse and practical applications.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 May 2024

Hazwani Shafei, Rahimi A. Rahman and Yong Siang Lee

Built environments are highly vulnerable to climatic disasters such as extreme floods, droughts and storms. Inaccurate decisions in adopting emerging construction technologies can…

Abstract

Purpose

Built environments are highly vulnerable to climatic disasters such as extreme floods, droughts and storms. Inaccurate decisions in adopting emerging construction technologies can result in missed opportunities to improve the resilience of built environments. Therefore, understanding the effectiveness of emerging construction technologies in improving built environment resilience can help in making better strategic decisions at the national and organizational levels. This study aims to evaluate the effectiveness of Construction 4.0 technologies in improving built environment resilience.

Design/methodology/approach

A list of Construction 4.0 technologies was adopted from a national strategic plan. Then, the data were collected using the fuzzy technique for order preference by similarity to ideal solution technique from selected built environment experts to determine the relative effectiveness of Construction 4.0 technologies in improving built environment resilience.

Findings

Six Construction 4.0 technologies are critical in improving built environment resilience (in rank order): building information modeling, autonomous construction, advanced building materials, big data and predictive analytics, internet of Things and prefabrication and modular construction. In addition, adopting Construction 4.0 technologies collectively is crucial, as moderate to strong connections exist among the technologies in improving built environment resilience.

Originality/value

To the best of the authors’ knowledge, this is one of the first papers that evaluate the effectiveness of Construction 4.0 technologies in improving built environment resilience. Industry professionals, researchers and policymakers can use the study findings to make well-informed decisions on selecting Construction 4.0 technologies that improve built environment resilience to climatic disasters.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 4
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 18 April 2024

John Aliu, Ayodeji Emmanuel Oke, Isaac I. Akinwumi, Rislan Abdulazeez Kanya and Lydia Uyi Ehiosun

This study aimed to investigate and analyze the level of awareness and adoption of distributed ledger technologies (DLTs) within the Nigerian construction industry. The focus was…

Abstract

Purpose

This study aimed to investigate and analyze the level of awareness and adoption of distributed ledger technologies (DLTs) within the Nigerian construction industry. The focus was on addressing the current state of DLT utilization, identifying challenges and opportunities and proposing strategies to enhance the integration of DLTs into the construction processes and practices of Nigerian professionals and organizations.

Design/methodology/approach

The research was underpinned by a robust theoretical and conceptual framework, drawing from established theories of technology adoption. A comprehensive literature review guided the identification of various DLT types. This informed the development of a well-structured questionnaire, which was then distributed to Nigerian construction professionals. The collected data underwent analysis using percentages, frequencies, mean scores, the Kruskal–Wallis H-test and the Shapiro–Wilk test.

Findings

A significant finding of this study reveals a generally low awareness and implementation of DLT among construction professionals in Nigeria. These findings emphasize the urgent need for comprehensive strategies to bridge the gap between awareness and adoption of DLT within the Nigerian construction industry.

Practical implications

Industry associations, regulatory bodies and educational institutions can collaborate to develop specialized programs aimed at familiarizing professionals with the benefits and applications of DLTs. Additionally, technology providers and policymakers can leverage these findings to design user-friendly interfaces and guidelines for seamless DLT integration into construction processes.

Originality/value

This study contributes to the existing body of knowledge by providing a comprehensive assessment of the awareness and adoption of DLTs specifically within the Nigerian construction industry. While the global recognition of DLT’s potential in construction is acknowledged, this research delves into a regional context, shedding light on the specific opportunities within Nigeria. Furthermore, the study’s identification of a gap between awareness and implementation highlights a critical area for future exploration and development in the field of construction technology adoption.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Book part
Publication date: 16 January 2024

Ayodeji E. Oke and Seyi S. Stephen

In the effort to procure solutions to emerging challenges faced in the construction industry, construction stakeholders implemented the use of several technologies in construction…

Abstract

In the effort to procure solutions to emerging challenges faced in the construction industry, construction stakeholders implemented the use of several technologies in construction operations from the onset of project planning to completion. Cyber technology introduced into construction brought about the inclusion of wearable technology, mobile devices, apps, project management software, drones, 3D printers, robotics, etc. to enhance output as the industry tends towards that which is sustainable. This chapter identified benefits, barriers and other related cyber technology interactions within the scope of delivering projects that are of standard, budget and quality at the same time. The conclusion gave a summary of the whole chapter for further comprehension.

Details

A Digital Path to Sustainable Infrastructure Management
Type: Book
ISBN: 978-1-83797-703-1

Keywords

Article
Publication date: 11 August 2023

Ruifan Chang and Maxwell Fordjour Antwi-Afari

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the…

Abstract

Purpose

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the application of 3D printing technology at various stages of the project lifecycle has been explored, few studies have identified the relative importance of critical success factors (CSFs) for implementing 3D printing technology in construction projects. To address this research gap, this study aims to explore the academics (i.e. researchers) and construction practitioners’ perspectives on CSFs for implementing 3D printing technology in construction projects.

Design/methodology/approach

To do this, a questionnaire was administered to participants (i.e. academics and construction practitioners) with knowledge and expertise in 3D printing technology in construction projects. The collected data were analysed using mean score ranking, normalization and rank agreement analysis to identify CSFs and determine the consistency of the ranking of CSFs between academics and construction practitioners. In addition, exploratory factor analysis was used to identify the relationships and underlying constructs of the measured CSFs.

Findings

Through a rank agreement analysis of the collected data, 11 CSFs for implementing 3D printing technology were retrieved (i.e. 17% agreement), indicating a diverse agreement in the ranking of the CSFs between academics and construction practitioners. In addition, the results show three key components of CSFs including “production demand enabling CSFs”, “optimize the construction process enabling CSFs” and “optimized design enabling CSFs”.

Originality/value

This study highlights the feasibility of implementing the identified CSFs for 3D printing technology in construction projects, which not only serves as a reference for other researchers but also increases construction practitioners’ awareness of the practical benefits of implementing 3D printing technology in construction projects. Specifically, it would optimize the construction lifecycle processes, enhance digital transformation and promote sustainable construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 14 August 2023

Husam Abdullah Qasem Almatari, Melissa Chan and Md Asrul Nasid Masrom

The construction industry is a major economic driver in Malaysia, playing a pivotal role in the developing nations economic growth. Malaysia's reliance on labor-driven…

531

Abstract

Purpose

The construction industry is a major economic driver in Malaysia, playing a pivotal role in the developing nations economic growth. Malaysia's reliance on labor-driven construction practices often sees local industry lagging in adopting technological advancements common to the construction sector on a global scale. This study investigates the challenges faced by project players in using new construction industrial revolution (IR) 4.0 technologies and the difficulties in implementing these technologies in construction projects.

Design/methodology/approach

A quantitative survey was distributed to 183 practitioners in the Malaysian construction industry. The collected data (N = 121) has been analyzed using statistical software to calculate relative importance index values for the identified factors. A triangulation approach to validate the factors obtained from the survey was conducted with an expert group to ensure there were no additional considerations identified in the study.

Findings

The study results show that the main factors in adopting construction IR 4.0 technologies are 1) high implementation costs, 2) hesitation to adopt technologies, 3) lack of standards, 4) legal and contractual uncertainty and 5) complexity. By investigating these factors, cost and regulation issues can gradually be resolved, with construction firms implementing new technologies, educating workers and ensuring government involvement in training for skill development to support IR 4.0.

Originality/value

The outcome of these efforts to resolve construction productivity would be beneficial in their industry impact on practice and digital transformation. Additionally, the results add to the body of knowledge for construction practitioners and technology developers to work together efficiently on the implementation of construction 4.0 technologies.

Details

Smart and Sustainable Built Environment, vol. 13 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 July 2023

Navodana Rodrigo, Hossein Omrany, Ruidong Chang and Jian Zuo

This study aims to investigate the literature related to the use of digital technologies for promoting circular economy (CE) in the construction industry.

1522

Abstract

Purpose

This study aims to investigate the literature related to the use of digital technologies for promoting circular economy (CE) in the construction industry.

Design/methodology/approach

A comprehensive approach was adopted, involving bibliometric analysis, text-mining analysis and content analysis to meet three objectives (1) to unveil the evolutionary progress of the field, (2) to identify the key research themes in the field and (3) to identify challenges hindering the implementation of digital technologies for CE.

Findings

A total of 365 publications was analysed. The results revealed eight key digital technologies categorised into two main clusters including “digitalisation and advanced technologies” and “sustainable construction technologies”. The former involved technologies, namely machine learning, artificial intelligence, deep learning, big data analytics and object detection and computer vision that were used for (1) forecasting construction and demolition (C&D) waste generation, (2) waste identification and classification and (3) computer vision for waste management. The latter included technologies such as Internet of Things (IoT), blockchain and building information modelling (BIM) that help optimise resource use, enhance transparency and sustainability practices in the industry. Overall, these technologies show great potential for improving waste management and enabling CE in construction.

Originality/value

This research employs a holistic approach to provide a status-quo understanding of the digital technologies that can be utilised to support the implementation of CE in construction. Further, this study underlines the key challenges associated with adopting digital technologies, whilst also offering opportunities for future improvement of the field.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 20 December 2022

Nathaniel Ayinde Olatunde, Angel M. Gento, Victor N. Okorie, Olumide W. Oyewo, Modupe Cecilia Mewomo and Imoleayo Abraham Awodele

Construction 4.0 technology is a novel innovative technology that has been proved to enhance project performance. However, information on the concept's awareness, adoption…

2881

Abstract

Purpose

Construction 4.0 technology is a novel innovative technology that has been proved to enhance project performance. However, information on the concept's awareness, adoption readiness and challenges in developing economies is still scanty. The purpose of the study is to appraise awareness, adoption readiness and challenges of Construction 4.0 technologies in Nigeria to bring to the fore the state of art of these innovative technologies in the study area.

Design/methodology/approach

The study used a convenient sampling technique to select 129 construction professionals (architects, engineers and quantity surveyors) in Osun State, Nigeria, who provided data for the study through a closed-ended structure questionnaire survey. The quantitative data supplied were analysed using frequency, percentile, Cronbach's alpha, mean score (MS) analysis and analysis of variance (ANOVA).

Findings

The overall awareness level of construction professionals in the study area about Construction 4.0 technologies is at a moderate level (MS = 3.03). The analysis of each component of the Construction 4.0 technologies shows that BIM (MS = 3.69) has the highest level of awareness, while augmented reality (MS = 2.51) has the least awareness level. More results show a significant difference in the opinion of the respondents, a significant difference in the respondents on 36% of the components of Construction 4.0 technologies. The adoption readiness of the Nigerian construction industry (NCI) to Construction 4.0 technologies is at an initial level (MS = 2.86). However, the 3D printing (MS = 3.36) and augmented reality (MS = 2.49) have the highest and lowest adoption readiness ratings, respectively. There is no significant difference in how respondents ranked the NCI adoption readiness on 73% of the components of Construction 4.0 technologies. The main challenges of Construction 4.0 technologies in the study area are lack of standardisation (MS = 4.02), lack of investment in research and development and cost of implementation (MS = 3.87) each. The result shows that there is perfect unanimity in the way respondents ranked the challenges of Construction 4.0.

Practical implications

The study provided information on the status quo of Construction 4.0 technologies in the NCI to enhance improvement in practice and the attendant project delivery.

Originality/value

The study attempted to bring to the fore the state of the art on awareness, adoption readiness and challenges of Construction 4.0 technologies in Nigeria. The study's information will be valuable to improve project delivery.

Details

Frontiers in Engineering and Built Environment, vol. 3 no. 2
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 16 September 2022

Daniel Bernardo Ribeiro, Aparecido dos Reis Coutinho, Walter Cardoso Satyro, Fernando Celso de Campos, Carlos Roberto Camello Lima, José Celso Contador and Rodrigo Franco Gonçalves

Construction industry (CI) has great prominence for the world economy, and it is expected that, with the use of the innovative technologies and approaches of Industry 4.0 (I4.0)…

Abstract

Purpose

Construction industry (CI) has great prominence for the world economy, and it is expected that, with the use of the innovative technologies and approaches of Industry 4.0 (I4.0), the new industrial paradigm, construction can reach higher levels of productivity. This study aims to develop a model (readiness model) to assess the level of use of I4.0 technologies by the construction sector in Brazil and its most relevant applications.

Design/methodology/approach

The methodology used was bibliographic research, design-science research and a survey to validate the model, carried out with 162 companies, considered among the main ones in the sector in Brazil. The literature review revealed 13 technologies of I4.0 applied to construction; hence, the views of industry experts were based on these technologies.

Findings

The Digital Advancement Within CoNstruction (DAWN) readiness model was proposed, showing that among the 13 evaluated technologies of I4.0 and their applications, the Brazilian construction companies had a low level of utilization; both high and middle-income companies presented this low level of use; some technologies with a greater number of scientific publications were less used in practice in the Brazilian construction.

Originality/value

The originality and theoretical contribution are to present a readiness model to assess the level of use of I4.0 technologies and their most relevant applications in the CI in countries with an economy similar to Brazil’s, making it possible to measure the level of adoption of these technologies.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 89000