Search results

1 – 10 of 273
Article
Publication date: 17 November 2022

Pooneh Kardar and Reza Amini

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Abstract

Purpose

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Design/methodology/approach

In this research, topographies with a different method, such as hot embossing and hot pulling, were achieved, and biological analyses were done with macroalgae Ulva Linza cells. The effect of topography via local binding geometry (honeycomb size gradients) and Wenzel roughness on the settling of Ulva microorganisms was tested.

Findings

As a result, Ulva spores confirmed different reactions to a similar set of tapered microstructures that was in agreement with the results on distinct honeycombs. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Research limitations/implications

The reaction of an organism at the interface of vehicles’ substrate is powerfully affected by surface topographies.

Practical implications

The best embedment occurred on structures with bigger sizes than Ulva Linza’s spores. The density of settled spores was proportional to Wenzel roughness and the spores favour to attach to “kink sites” positions.

Social implications

Unfortunately, unpleasant aggregation of marine biofouling on marine vehicles’ surfaces, generate terrific difficulties in the relevant industry.

Originality/value

There was a sharp relationship between Wenzel roughness and settle of Ulva Linza spores. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 October 2022

Reza Amini and Pooneh Kardar

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the…

Abstract

Purpose

This paper aims to achieve phosphating via optimal features of Mg metal as a suitable base coating, which is considered for other properties such as barrier properties against the passage of several factors.

Design/methodology/approach

In this research, in the phosphate bath, immersion time, temperature and the content of sodium nitrite as an accelerator were changed.

Findings

As a result, increasing the immersion time of AZ31 Mg alloy samples in the phosphating bath as well as increasing the ratio of sodium dodecyl sulfate (SDS) concentration to sodium nitrite concentration in the phosphating bath formulation increase the mass of phosphating formed per unit area of the Mg alloy. The results of the scanning electron microscope test showed phosphating is not completely formed in short immersion times, which is a thin and uneven layer.

Research limitations/implications

Mg and its alloys are sensitive to galvanic corrosion, which would lead to generating several holes in the metal. As such, it causes a decrease in mechanical stability as well as an unfavorable appearance.

Practical implications

Mg is used in several industries such as automobile and computer parts, mobile phones, astronaut compounds, sports goods and home appliances.

Social implications

Nevertheless, Mg has high chemical reactivity, so an oxide-hydroxide layer is formed on its surface, which has a harmful effect on the adhesion and uniformity of the coating applied on Mg.

Originality/value

By increasing the ratio of SDS concentration to sodium nitrite concentration in the phosphating bath, the corrosion resistance of the phosphating increases.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 May 2023

Aditya Nugroho and Wei-Tsong Wang

This research aims to examine the factors that influence customers' product return intentions and proposes that YouTube product reviews can mitigate customers' desire to return a…

Abstract

Purpose

This research aims to examine the factors that influence customers' product return intentions and proposes that YouTube product reviews can mitigate customers' desire to return a product.

Design/methodology/approach

The proposed theoretical research model and hypothesized relationship were investigated using a quantitative process. This study used 302 data from Indonesian young adult respondents to examine the structural model, which was analyzed using the SmartPLS 3.2 software package.

Findings

The results show that YouTube product reviews, product fit uncertainty and customer satisfaction are the key determinants of customers' product return intention. Furthermore, the results show that the credibility of YouTube product reviews has a major impact on customers' familiarity with a product, satisfaction and the likelihood of returning goods to sellers.

Practical implications

In the e-commerce industry, increasing the use of YouTube product reviews will help businesses eliminate unnecessary product returns. Sellers are also encouraged to collaborate with YouTube producers to review specific products, which can benefit companies by raising brand awareness and gaining customer feedback. Furthermore, YouTube online product reviews can help consumers avoid having an unpleasant shopping experience that causes emotional reactions and lowers satisfaction.

Originality/value

Most research has not considered antecedents in observing the product return phenomenon; this study observes a prerequisite of consumer product returns (i.e. information asymmetry and product familiarity) and investigates the relationships between YouTube product reviews, customer satisfaction and product return intention.

Details

Information Technology & People, vol. 37 no. 4
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 26 March 2024

Chao Li, Jin Gao, Qingqing Xu, Chao Li, Xuemei Yang, Kui Xiao and Xiangna Han

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a…

Abstract

Purpose

The color painting of ancient buildings has high historical and artistic value but is prone to aging due to long-term outdoor exposure. The purpose of this study is to develop a new type of sealing coating to mitigate the impact of ultraviolet (UV) light on color painting.

Design/methodology/approach

The new coating was subjected to a 500-h UV-aging test. Compared with the existing acrylic resin Primal AC33, the UV aging behavior of the new coating, such as color difference and gloss, was studied with aging time. The Fourier infrared spectra of the coatings were analyzed after the UV-aging test.

Findings

Compared with AC33, the antiaging performance of SF8 was substantially improved. SF8 has a lower color difference value and better light retention and hydrophobicity. The Fourier transform infrared spectroscopy results showed that the C-F bond and Si-O bonds in the resin of the optimized sealing coating protected the main chain C-C structure from degradation during the aging process; thus, the resin maintained good stability. The hindered amine light stabilizer TN292 added to the coating inhibited the antiaging process by trapping active free radicals.

Originality/value

To address the problem of UV aging of oil-decorated colored paintings, a new type of sealing coating with excellent antiaging properties was developed, laying the foundation for its demonstration application on the surface of ancient buildings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 October 2022

Maryam Gholami, Amir Hossein Mahvi, Fahimeh Teimouri, Mohammad Hassan Ehrampoush, Abbasali Jafari Nodoushan, Sara Jambarsang and Mohammad Taghi Ghaneian

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM…

Abstract

Purpose

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).

Design/methodology/approach

The molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.

Findings

The highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.

Originality/value

Indigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 November 2022

Md. Raijul Islam, Ayub Nabi Nabi Khan, Rois Uddin Mahmud, Shahin Mohammad Nasimul Haque and Md. Mohibul Islam Khan

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a…

Abstract

Purpose

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a natural dye.

Design/methodology/approach

The dye was extracted from the outer skin of onions by boiling in water and later concentrated. The bio-mordants were prepared by maceration using methanol and ethanol. The fabrics were pre-mordanted, simultaneously mordanted and post-mordanted with various concentrations according to the weight of the fabric. The dyed and mordanted fabrics were later subjected to measurement of color coordinates, color strength and colorfastness to the washing test. Furthermore, the dyed samples were characterized by Fourier transform infrared, and different chemical bonds were analyzed by X-ray photoelectron spectroscopy analysis.

Findings

Significant improvement was obtained in colorfastness and color strength values in various instances using banana peel and guava leaves as bio mordants. Post-mordanted with banana peel provided the best results for wash fastness. Better color strength was achieved by fabric post-mordanted with guava leave extracts.

Originality/value

Sustainable dyeing methods of natural dyes using banana peel and guava leaves as bio mordants were explored on jute–cotton union fabrics. Improvement in colorfastness and color strength for various instances was observed. Thus, this paper provides a promising alternative to metallic salt mordants.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 6 May 2024

Mohammed Al Kailani, Aysha Al Dhaheri and Wael Sheta

Interior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption…

Abstract

Purpose

Interior workspace environments use exclusively artificial light, resulting in a loss of biological connection and natural light quality, as well as greater energy consumption. The purpose of the study is to identify a suitable system that can provide natural light to such interior spaces throughout the day while supplementing it with artificial light when necessary. The fundamental aim is to provide insights into the most effective solutions for energy-efficient lighting design in the UAE's environment, with the potential to lower energy consumption related to interior lighting.

Design/methodology/approach

The study adopted an empirical approach to gather and analyze primary data based on field measurements to understand and assess existing lighting conditions, as well as DIALux lighting simulation software to test the efficacy of the proposed HLS in terms of natural light delivery, illumination quality and energy consumption. A branch of a local bank in the United Arab Emirates, situated inside one of the shopping malls where there is no natural light penetration, has been chosen as a case study.

Findings

The findings of comparing the base case to four probable scenarios that used HLS revealed that the third scenario, which uses 100% pure sunshine and 35% artificial LED light during daylight operations and 100% LED light during night duty, is considered to be optimal in terms of illumination quality and energy efficiency.

Originality/value

The study demonstrated the potential of innovative lighting to improve the visual working environment in interior spaces with limited access to direct natural lighting, especially in arid regions, where sunlight is plentiful throughout the year. The study contributes new insights into the establishment of lighting-related recommendations and standards for the UAE context. This may include advice for sustainable construction practices, lighting guidelines or incentives to encourage the use of hybrid lighting technology in commercial and institutional buildings.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 13 May 2024

Rania Abdel Gwad Eloriby, Wael Sabry Mohamed and Hamdy Mohamed Mohamed

The purpose of this study is to evaluate the effectiveness of nanocontainer solutions in removing deteriorated and aged polymers commonly used in coating and consolidating…

Abstract

Purpose

The purpose of this study is to evaluate the effectiveness of nanocontainer solutions in removing deteriorated and aged polymers commonly used in coating and consolidating archaeological glass.

Design/methodology/approach

This study focused on characterizing glass surfaces coated with two commonly used polymeric materials in archaeological glass preservation. Furthermore, the study evaluates the elimination of these coatings from the surfaces by using innovative aqueous systems composed of micellar solutions (MS) and oil-in-water (O/W) Texapon-P microemulsions (TEX). Glass samples coated with selected polymers were subjected to thermal and photochemical aging to simulate natural degradation conditions. This study aimed to evaluate the effectiveness of nanocontainer aqueous systems compared to acetone (Ac), a conventional solvent commonly used for removal procedures. The characterization procedures involved transmission electron microscopy, USB digital microscopy, scanning electron microscopy, color alteration and gravimetric measurement.

Findings

The findings indicate that the effectiveness of novel techniques using aqueous nanocontainer systems is quite promising when considering a “green approach” to preserving cultural heritage. Microscopic examination demonstrated the efficacy of MS in effectively removing acrylic and vinyl polymers from the glass surface. Furthermore, TEX proved effective in removing polyvinyl acetate (PVA) over Paraloid B72 (B-72). In addition, the measurement of color alteration values revealed a decrease after using MS compared to the standard sample before applying the polymers, with values of ΔE = 1.48 and 1.82 for B-72 polymer and PVA, respectively.

Originality/value

This research provides nanocontainer solutions for removing aged polymers from the glass surface. This makes the current study a promising step for treating archaeological glass.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 May 2024

Kemal Yildirim and Menşure Kübra Müezzinoğlu

This study researched the effects on the perceptual evaluations of participants for the physical environmental factors of cafés using curvilinear, rectilinear, and mixed forms to…

Abstract

Purpose

This study researched the effects on the perceptual evaluations of participants for the physical environmental factors of cafés using curvilinear, rectilinear, and mixed forms to provide for the spatial states of belonging, to increase the pleasures, and to extend the periods of remaining in the space.

Design/methodology/approach

This study used virtual reality (VR) technology to model the cafés designed by using curvilinear, rectilinear and mixed forms as an experimental environment. After experiencing the virtual images of the experimental spaces, participants filled out a “spatial perception” questionnaire. Perceptual evaluations of 415 participants regarding the environmental factors of cafés designed using curvilinear, linear and mixed forms were analyzed in a computer environment.

Findings

According to the analysis of the questionnaire data, the cafés using mixed forms were perceived as more positive for the factors of appeal (inviting, restful, warm and sincere), planning (well-planned) and space freedom (roomy, uncluttered, uncrowded, large, wide and free space) compared with the cafés using curvilinear and rectilinear forms. Furthermore, the cafés using curvilinear forms were perceived as more positive for all elements compared with the cafés using rectilinear forms. However, there was a more negative approach in the perceptual evaluations of participants connected to increases in level of education.

Originality/value

The research results clearly demonstrated that the different interior and furniture forms frequently encountered in cafés cause significant effects on users’ perceptual evaluations.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 273