Search results

1 – 10 of over 4000
Article
Publication date: 14 September 2015

Marek Burdek

This paper aims to analyze changes in the surface topography of the work rolls during skin passing. Cold rolled steel sheets are additionally subject to skin pass rolling to form…

Abstract

Purpose

This paper aims to analyze changes in the surface topography of the work rolls during skin passing. Cold rolled steel sheets are additionally subject to skin pass rolling to form an appropriate surface topography. This operation should facilitate the process of further metal forming of steel sheets, such as deep drawing, painting, etc. The surface topography of steel sheets is determined by the surface topography of the work rolls as well as the skin pass rolling parameters (rolling speed, elongation, roll force, etc.). Suitable preparation and selection of roll surface topography influences the degree of rolls wear and the surface topography of steel sheets as well.

Design/methodology/approach

Two-dimensional (2D) and three-dimensional (3D) roughness measurements of work roll surface before, during and after finishing of skin pass rolling of steel sheets are presented in the paper. The measurements were performed on four sets of work rolls with different surface topography.

Findings

The appearance of the surface of rolls obtained from the analysis of 3D roughness, the values of selected parameters of the 3D roughness and relative changes of the roughness parameter Ra/Sa depending on the length of the skin passed steel sheets are presented.

Practical implications

The wear of rolls is different depending on work surface topography.

Originality/value

The aim of this paper is to analyze changes in the surface topography of the work rolls during skin passing. It was expected that the surface of work rolls with more summits at similar average roughness Ra will change much faster than the surface with fewer summits. For this purpose, preliminary tests were performed in an industrial environment on four pairs of work rolls, including two pairs of rolls that were hard chromium-plated.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2015

Dong Xu, Jie Zhang, Hongbo Li, Jinsong Lu, Qingguo Fan and Hailong Dong

The purpose of this paper is to build a transient wear prediction model of surface topography of textured work roll, and then to investigate the wear performance of different…

Abstract

Purpose

The purpose of this paper is to build a transient wear prediction model of surface topography of textured work roll, and then to investigate the wear performance of different original textured surfaces. The surface topography of steel sheets is one of the most important surface quality indexes, which is inherited from the textured work rolls in cold rolling. Surface topography of work roll is obviously changing in the cold rolling process. However, surface topography is difficult to measure in the industry production process.

Design/methodology/approach

This paper presents a numerical approach to simulate the wear process based on the mixed lubrication model of cold rolling interface developed by Wilson and Sheu (Sheu and Wilson, 1994). It is assumed that wear takes place at locations where the surfaces are in direct contact, and the volume is removed by an abrasive particle which is an abstract concept based on the wear phenomenon of textured work roll. At each simulation cycle, the distribution of the contact pressure is calculated by the lubrication model. The material is removed by an abstract abrasive particle and the surface topography is modified correspondingly. The renewed surface topography is then used for the next cycle.

Findings

Through comparative analysis, it can be found that the simulation results possess similar statistical characteristic with the measured data. A set of roughness parameters such as the amplitude, spacing and frequency-domain characteristics are introduced to analyze the wear performance of different textured surfaces. Numerical examples show that the surface topography has a significant effect on the wear performance of work roll in cold rolling.

Originality/value

The proposed model can accurately predict the wear process of the surface topography in the cold rolling process, which provides the foundation for optimization of original surface topography of textured work roll. The model can also be considered as a tool applicable for research on control of the surface topography of steel strip in the cold rolling process.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2017

Zhijia Xu, Qinghui Wang and Jingrong Li

The purpose of this paper is to develop a general mathematic approach to model the microstructures of porous structures produced by additive manufacturing (AM), which will result…

Abstract

Purpose

The purpose of this paper is to develop a general mathematic approach to model the microstructures of porous structures produced by additive manufacturing (AM), which will result in fractal surface topography and higher roughness that have greater influence on the performance of porous structures.

Design/methodology/approach

The overall shapes of pores were modeled by triply periodic minimal surface (TPMS), and the micro-roughness details attached to the overall pore shapes were represented by Weierstrass–Mandelbrot (W-M) fractal representation, which was integrated with TPMS along its normal vectors. An index roughly reflecting the irregularity of fractal TPMS was proposed, based on which the influence of the fractal parameters on the fractal TPMS was qualitatively analyzed. Two complex samples of real porous structures were given to demonstrate the feasibility of the model.

Findings

The fractal surface topography should not be neglected at a micro-scale level. In addition, a decrease in the fractal dimension Ds may exponentially make the topography rougher; an increase in the height-scaling parameter G may linearly increase the roughness; and the number of the superposed ridges has no distinct influence on the topography. Furthermore, the synthesis method is general for all implicit surfaces.

Practical implications

The method provides an alternative way to shift the posteriori design paradigm of porous media to priori design mode through numeric simulation. Therefore, the optimization of AM process parameters, as well as the porous structure, can be potentially realized according to specific functional requirement.

Originality/value

The synthesis of TPMS and W-M fractal geometry was accomplished efficiently and was general for all implicit freeform surfaces, and the influence of the fractal parameters on the fractal TPMS was analyzed more systematically.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 July 2018

Yunlong Jiao, Xiaojun Liu and Kun Liu

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance…

Abstract

Purpose

Dynamic spreading and wetting on the rough surfaces is complicated, which directly affects the fluxion and phrase transition properties of the fluid. This paper aims to enhance our knowledge of the mechanism of micro-texture lubrication from interface wettability and provide some guidance for the practical manufacturing of the surfaces with special wettability and better lubrication characteristics.

Design/methodology/approach

The effect of surface topography on the wetting behavior of both smooth and rough hydrophilic surfaces was investigated using a combination of experimental and simulation approaches. Four types of patterns with different topographies were designed and fabricated through laser surface texturing. The samples were measured with a non-contact three-Dimensional (3D) optical profiler and were parameterized based on ISO 25178. Quantitative research on the relevancy between the topography characteristic and wettability was conducted with several 3D topography parameters.

Findings

Results show that for the surfaces with isotropic textures, topography with a small skewness (Ssk) and a large kurtosis (Sku) exhibits better wettability and spreading behavior. For the surfaces with anisotropic textures (smaller texture aspect ratio, Str), dominant textures (such as long groove, rectangle) play a significant guiding role in promoting spreading. In addition, the moving mechanism of the triple contact line and anisotropic spreading were also studied using a computational fluid dynamics simulation. The simulation results have a good adherence with the experimental results.

Originality/value

Most of the surface characterization methods at present remain at a level that is related to geometric description, and the topography parameters are limited to 2D roughness parameters. So in present study, the relevancy between wettability and 3D surface topography parameters is explored. The authors believe that the current work provides a new viewpoint to the relevancy between surface topography and wettability.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 November 2022

Pooneh Kardar and Reza Amini

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Abstract

Purpose

The purpose of this paper is to study the correlation between different topographies and the reaction of Ulva Linza fouling species.

Design/methodology/approach

In this research, topographies with a different method, such as hot embossing and hot pulling, were achieved, and biological analyses were done with macroalgae Ulva Linza cells. The effect of topography via local binding geometry (honeycomb size gradients) and Wenzel roughness on the settling of Ulva microorganisms was tested.

Findings

As a result, Ulva spores confirmed different reactions to a similar set of tapered microstructures that was in agreement with the results on distinct honeycombs. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Research limitations/implications

The reaction of an organism at the interface of vehicles’ substrate is powerfully affected by surface topographies.

Practical implications

The best embedment occurred on structures with bigger sizes than Ulva Linza’s spores. The density of settled spores was proportional to Wenzel roughness and the spores favour to attach to “kink sites” positions.

Social implications

Unfortunately, unpleasant aggregation of marine biofouling on marine vehicles’ surfaces, generate terrific difficulties in the relevant industry.

Originality/value

There was a sharp relationship between Wenzel roughness and settle of Ulva Linza spores. The local binding geometry and the Wenzel roughness factor “r” were dominant on settling of Ulva Linza spores.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 September 2022

Zhiyong Wang, Yuankai Zhou and Xue Zuo

The purpose of this paper is to study the tribological effect of zinc borate ultrafine powder (ZBUP) oil additive on the running-in quality.

Abstract

Purpose

The purpose of this paper is to study the tribological effect of zinc borate ultrafine powder (ZBUP) oil additive on the running-in quality.

Design/methodology/approach

The running-in quality was assessed by friction coefficient and surface topography. Fractal parameters including fractal dimension, the width of multifractal, the multifractal difference, multifractal parameters, phase trajectory and correlation dimension were used to extract the nonlinear characteristics of surface topography and friction coefficient.

Findings

When the ZBUP additive was added, the convergence degree of the phase trajectory and the stability of the running in were higher than that of base oil. It indicates that the ZBUP additive can improve the running-in quality of sliding bearing. Besides, the ZBUP additive can shorten the running-in time. A boundary protective film, which has good friction-reducing and anti-wear effects, was generated on the surface when the ZBUP additive was added.

Originality/value

The results have a great significance to improve the running-in quality and prolong the service life of the sliding bearing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 October 2016

Benoit Rosa, Pascal Mognol and Jean-Yves Hascoët

Direct metal deposition (DMD) with laser is an additive manufacturing process enabling rapid manufacturing of complex metallic and thin parts. However, the final quality of…

Abstract

Purpose

Direct metal deposition (DMD) with laser is an additive manufacturing process enabling rapid manufacturing of complex metallic and thin parts. However, the final quality of DMD-manufactured surfaces is a real issue that would require a polishing operation. Polishing processes are usually based on abrasive or chemical techniques. These conventional processes are composed by many drawbacks such as accessibility of complex shapes, environmental impacts, high time consumption and cost, health risks for operators, etc. […] This paper aims to solve these problems and improve surface quality by investigating the laser polishing (LP) process.

Design/methodology/approach

Based on melting material by laser, the LP process enables the smoothing of initial topography. However, the DMD process and the LP processes are based on laser technology. In this context, the laser DMD process is used directly on the same machine for the polishing operation. Currently, few studies focus on LP of additive laser manufacturing surfaces, and it tends to limit the industrial use of additive manufacturing technology. The proposed study describes an experimental analysis of LP surfaces obtained by DMD process.

Findings

The investigation results in the improvement of a complete final surface quality, according to LP parameters. For mastering LP processes, operating parameters are modelled.

Originality/value

This experimental study introduces the LP of thin and complex DMD parts, to develop LP applications. The final objective is to create a LP methodology for optimizing the final topography and productivity time according to parts’ characteristics.

Details

Rapid Prototyping Journal, vol. 22 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2011

Ramiro Martins, Cristiano Locatelli and Jorge Seabra

The purpose of this paper is to get a better understanding of roughness evolution and micropitting initiation on the tooth flank, as well as the evolution of surface topography

Abstract

Purpose

The purpose of this paper is to get a better understanding of roughness evolution and micropitting initiation on the tooth flank, as well as the evolution of surface topography during the test load stages in a modified DGMK short micropitting test procedure.

Design/methodology/approach

A modified DGMK short micropitting test procedure was performed, using an increased number of surface observations (three times more) in order to understand the evolution of the surface during each load stage performed. Each of these surface observations consists in the evaluation of surface roughness, surface topography, visual inspection and also weigh measurements as well as lubricant analysis.

Findings

This work showed that the larger modifications on surface took place in the beginning of tests, especially during load stage K3 (lowest load, considered as running‐in) and on the first period of load stage K6, that is, during the first 200,000 cycles of the test. The 3D roughness parameters (St and Sv), obtained from the surface topographies, gave a more precise indication about surface roughness evolution and micropitting generation than the 2D parameters, especially in what concerns to inferring the depth of micropits and the reduction of roughness. Tooth flank topography allows to identify local changes on the surface and the appearance of first micropits.

Research limitations/implications

This work was performed with gears holding a high surface roughness and with a ester‐based lubricant. It was interesting to see the differences observed for surface evolution, for other base oils and also for gears with lower roughness.

Practical implications

The main implication of this work is the understanding that major changes in the surface took place in the first cycles, indicating that the running‐in procedure could be very important for the surface fatigue life. This work also showed that micropitting depends on local contact conditions. Depending on the roughness of the counter surface, micropitting can appear on the bottom of the deep valleys and/or do not appear on the tip of the roughness peaks. The surface topography, and implicitly 3D roughness parameters, is very useful for the observation of surface evolution.

Originality/value

This paper shows in detail the evolution of the tooth surface during a micropitting test. The micropits generation and evolution and also surface wear evolution are presented.

Details

Industrial Lubrication and Tribology, vol. 63 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2024

Shi Chen, Zhiyong Han, Qiang Zeng, Bing Wang, Liming Wang, Liuyang Guo and Yimin Shao

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance…

83

Abstract

Purpose

Hydro-viscous drive (HVD) clutches are widely used in equipment requiring soft start, such as fans and pumps, to transmit torque and adjust speed by changing the gap distance between friction pairs. This paper aims to propose a novel two-parameter evaluation method for HVD during the mixed lubrication stage. The objective is to develop an effective model that establishes the relationship between these parameters and the actual surface topography.

Design/methodology/approach

In the presented methods, the fractal features of the real manufacturing surface are calculated based on the power spectrum function by the ultra-depth three-dimensional microscope. After that, the hybrid friction model of the friction plate is established based on mixed elasto-hydrodynamic lubrication theory, boundary friction model and fractal theory. Then the torque and load bearing characteristics of the clutch are obtained, and the influences of the surface fractal features are investigated and discussed. Finally, the Weierstrass–Mandelbrot function is adopted for the surface topography characterization and evaluation.

Findings

The results indicate that the proposed method exhibits good accuracy, while the speed difference between the friction pair exceeds 2,500 rpm. It is concluded that this paper proposed a way to evaluate the torque and loading capacity of HVD considering the real manufacturing surface topography and is helpful for surface optimization.

Originality/value

The originality and value of this study lie in its development of a novel torque and load bearing capacity evaluation method for HVD in mixed lubrication stage, considering manufacturing surface topography and describing the real manufacturing surface.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhi Li, YiYuan Du, Zhiming Xu, Xuqian Qiao and Hong Zhang

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication…

59

Abstract

Purpose

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication condition. As a typical contact form of gears and bearings, the optimization of friction characteristics at the elastohydrodynamic lubrication (EHL) interface has attracted the attention of scholars. Laser surface texturing is a feasible optimization solution, but there have been concerns about whether the surface texture of high-pair parts will affect their fatigue life.

Design/methodology/approach

To examine the impact of texture preparation on the subsurface characteristics of high-pair interfaces under EHL conditions, a point contact EHL model is developed that takes into account the effect of textured surface topography. The pressure and thickness of the oil film are calculated as input parameters under different loads and entrainment velocities. The finite element method is used to simulate the impact of textures with varying diameters, densities and depths on the subsurface characteristics of the elastohydrodynamic interface. According to ISO 25178, analyze the relationship between 3D topography parameters and subsurface characteristics and study the trend of friction characteristics and subsurface characteristics based on the results of the ball on disc friction tests.

Findings

The outcomes suggest that under different rotational velocity and load conditions, the textured surfaces exhibit improved friction reduction effects; however, the creation of textures can result in significant subsurface plastic deformation and local peeling. The existence of texture makes the larger stress zone in the subsurface layer closer to the surface, leading to fatigue failure near the surface. Reasonable design parameters can help enhance the attributes of the subsurface. A smaller Sa and a Str greater than 0.5 can achieve ideal subsurface properties on the textured surface.

Originality/value

This paper investigates the influence of surface texture on the friction and subsurface characteristics of EHL interfaces and analyzes the impact of surface texture on interface contact performance while achieving lubrication improvement functional characteristics. The results provide theoretical support for the optimization design and functional regulation of surface texture in EHL interfaces.

Peer review

The peer review history for this article is https://publons.com/publon/10.1108/ILT-10-2023-0324/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 4000