Search results

1 – 10 of 753
Article
Publication date: 7 November 2016

Anna Katarzyna Dabrowska

The purpose of this paper is to analyze the impact of design solutions used in clothing on the thermal resistance of the material systems from which the clothing is made, design…

Abstract

Purpose

The purpose of this paper is to analyze the impact of design solutions used in clothing on the thermal resistance of the material systems from which the clothing is made, design solutions used in clothing on its thermal insulation and clothing size on its thermal insulation properties.

Design/methodology/approach

This study involved laboratory tests of clothing protecting against cold and textile systems used in this type of garment using a “skin model†test stand and a thermal manikin.

Findings

Analysis of the results obtained from tests carried out showed that the design solutions used in a garment can model its local and overall insulation. It was found that using a bib in trousers has a dominant influence on the thermal properties of clothing. An important parameter is also the use of a hood, as well as the length of the jacket. No significant effect of other structural solutions, such as jacket fastening, pockets and reflective tapes, on the thermal performance of the clothing set was noted.

Originality/value

Although the reports available in the literature pay a lot of attention to the impact of the design of clothing protecting against cold on its thermal performance, most of the presented research results relate to the aspects of fit, whereas the analyses of the effects of other aspects of garment construction on thermal properties are lacking. Therefore, the analysis of the impact of design solutions used in clothing on its thermal insulation properties is a key original factor of this paper.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 October 2023

Liang Ma and Jun Li

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of…

Abstract

Purpose

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of research for each heating mode and identify their limitations. Further, the study provides insights into the optimization of intelligent temperature control algorithms and design considerations for intelligent cold-proof clothing.

Design/methodology/approach

This article presents a classification of active heating systems based on five different heating principles: electric heating system, solar heating system, phase-change material (PCM) heating system, chemical heating system and fluid/air heating system. The systems are analyzed and evaluated in terms of heating principle, research advancement, scientific challenges and application potential in the field of cold-proof clothing.

Findings

The rational utilization of active heating modes enhances the thermal efficiency of cold-proof clothing, resulting in enhanced cold-resistance and reduced volume and weight. Despite progress in the development of the five prevalent heating modes, particularly with regard to the improvement and advancement of heating materials, the current integration of heating systems with cold-proof clothing is limited to the torso and limbs, lacking consideration of the thermal physiological requirements of the human body. Additionally, the heating modes of each system tend to be uniform and lack differentiation to meet the varying cold protection needs of various body parts.

Research limitations/implications

The effective application of multiple heating modes helps the human body to maintain a constant body temperature and thermal equilibrium in a cold environment. The research of heating mode is the basis for realizing the temperature control of cold-proof clothing and provides an effective guarantee for the future development of the intelligent algorithms for temperature control of non-uniform heating of body segments.

Practical implications

The integration of multiple heating modes ensures the maintenance of a constant body temperature and thermal balance for the wearer in cold environments. The research of heating modes forms the foundation for the temperature regulation of cold-proof clothing and lays the groundwork for the development of intelligent algorithms for non-uniform heating control of different body segments.

Originality/value

The present article systematically reviews five active heating modes suitable for use in cold-proof clothing and offers guidance for the selection of heating systems in future smart cold-proof clothing. Furthermore, the findings of this research provide a basis for future research on non-uniform heating modes that are aligned with the thermal physiological needs of the human body, thus contributing to the development of cold-proof clothing that is better suited to meet the thermal needs of the human body.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 November 2013

Chao Sun, Jintu Fan, Huijun Wu, Yuenshing Wu and Xianfu Wan

The purpose of this paper is to develop multilayer clothing assemblies consisting of fibrous battings and reflective nano-fibrous thin layers for cold protective clothing for…

Abstract

Purpose

The purpose of this paper is to develop multilayer clothing assemblies consisting of fibrous battings and reflective nano-fibrous thin layers for cold protective clothing for improved thermal insulation.

Design/methodology/approach

Thermal insulation values of totally 20 assemblies made of varying layers of a thick polyester batting and four different types of thin interlayers were measured using a guarded hot-plate to investigate the effect of the properties of thin interlayers and construction of multilayer assemblies on thermal insulation. Cold protective jackets filled with polyester battings sandwiched with or without interlayers were also made and tested on the sweating fabric manikin-Walter.

Findings

Results show that the Rosseland mean extinction coefficients of the thin interlayer and the associated radiative thermal conductivity of the interlayers have significant influence on thermal insulation of the assembly when more than one reflective nano-fibrous interlayers are sandwiched in the assembly. The cold protective jacket filled with multilayer polyester battings and reflective nano-fibrous interlayers have better thermal insulation and moisture permeability index (im) than those filled with the same multilayer polyester battings, but with non-reflective nonwoven interlayers or without interlayers.

Originality/value

This paper clearly demonstrates the advantages of reflective nano-fibrous thin material for interlayers in the cold projective jacket.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 November 2017

Sora Shin, Hae-Hyun Choi, Yung Bin Kim, Byung-Hee Hong and Joo-Young Lee

The purpose of this paper is to evaluate the effects of intermittent and continuous heating protocols using graphene-heated clothing and identify more effective body region for…

Abstract

Purpose

The purpose of this paper is to evaluate the effects of intermittent and continuous heating protocols using graphene-heated clothing and identify more effective body region for heating in a cold environment.

Design/methodology/approach

Eight males participated in five experimental conditions at an air temperature of 0.6°C with 40 percent relative humidity: no heating, continuous heating the chest, continuous heating the back, intermittent heating the chest, and intermittent heating the back.

Findings

The results showed that the electric power consumption of the intermittent heating protocol (2.49 W) was conserved by 71 percent compared to the continuous protocol (8.58 W). Rectal temperature, cardiovascular and respiratory responses showed no significant differences among the four heating conditions, while heating the back showed more beneficial effects on skin temperatures than heating the chest.

Originality/value

First of all, this study was the first report to evaluate cold protective clothing with graphene heaters. Second, the authors provided effective intermittent heating protocols in terms of reducing power consumption, which was able to be evaluated with the characteristics of fast-responsive graphene heaters. Third, an intermittent heating protocol on the back was recommended to keep a balance between saving electric power and minimizing thermal discomfort in cold environments.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 March 2015

Matthew Patrick Morrissey and René Michel Rossi

The purpose of this paper is to present some new results about reflective cold protective clothing (i.e. those featuring metal coatings), and compare and contrast the data with…

469

Abstract

Purpose

The purpose of this paper is to present some new results about reflective cold protective clothing (i.e. those featuring metal coatings), and compare and contrast the data with other recent research work.

Design/methodology/approach

The authors used a thermal manikin and a guarded hot plate to determine the thermal resistance of different textile assemblies and garment featuring plasma-deposited metal-coated insulation and interlayers.

Findings

Depending on the exact approach, the authors show that metal coatings can increase the thermal resistance of textile assemblies by ∼30-75 per cent.

Practical implications

New data on reflective cold weather clothing show that metal coatings could be an important addition to cold weather clothing, especially those featuring high air permeability/optical porosity insulation. Plasma-deposited metal coatings cause the lowest increase in weight.

Originality/value

This paper provides new data about the efficacy, in terms of thermal resistance, of metal coatings for cold weather clothing.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 April 2022

Shuyang Li, Shu Jiang, Miao Tian, Yun Su and Jun Li

The purpose of this paper is to gain an in-depth understanding of the research progress, hotspots and future trends in the field of functional clothing.

Abstract

Purpose

The purpose of this paper is to gain an in-depth understanding of the research progress, hotspots and future trends in the field of functional clothing.

Design/methodology/approach

The records of 4,153 pieces of literature related to functional clothing were retrieved from Web of Science by using a comprehensive retrieval strategy. A piece of software, CiteSpace was used as a tool to visualize the results of specific terms, such as author, institution and keyword. By analyzing the knowledge maps with several indicators, the intellectual basis and research fronts for the functional clothing domain could then be demonstrated.

Findings

The result indicated that functional clothing was a popular research field, with approximately 500 papers published worldwide in 2020. Its main research area was material science and involved public environmental and occupational health, engineering, etc. showing the characteristic of multi-interdisciplinary. Textile Research Journal and International Journal of Clothing Science and Technology were the top two journals in this field. The USA, China, Australia, England and Germany have been active and frequently cooperating with each other. Donghua University, the Hong Kong Polytechnic University and NASA, with the largest number of publications, were identified as the main research drivers. According to the co-citation analysis, thermal stress, nanogenerator and electrospinning were the topics of most cited articles during the past 20 years.

Practical implications

The findings identified smart clothing and protective clothing to be the research frontiers in the field of functional clothing, which deserved further study in the future.

Originality/value

The outcomes offered an overview of the research status and future trends of the functional clothing field. It could not only provide scholars with convenience in identifying research hotspots and building potential cooperation in the follow-up research, but also assist beginners in searching core scholars and literature of great significance.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 June 2017

Anna Katarzyna Dabrowska, Grazyna Bartkowiak, Jagna Karcz and Iwona Frydrych

The purpose of this paper is to compare morphological and physical features of three kinds of materials intended for the insulating layer in the clothing protecting against cold  

Abstract

Purpose

The purpose of this paper is to compare morphological and physical features of three kinds of materials intended for the insulating layer in the clothing protecting against cold – high-bulk non-woven, goose down (GD) and duck down (DD).

Design/methodology/approach

Comparison of thermal performance of developed textile systems with the non-woven, GD and DD content was based on basic biophysical properties related to comfort sensations of the user such as thermal resistance, water vapor resistance and air permeability. In this study, light microscopy and scanning electron microscopy methods were employed to visualize the surface and internal structure of non-woven, GD and DD samples.

Findings

The paper indicates the advantages and disadvantages of each of selected insulating material. For the down samples, significantly higher thermal resistance in a dry state than for the non-woven samples can be achieved. Meanwhile, textile systems with the non-woven provide lower value of water vapor resistance. The selected textile systems for the research were characterized by a comparable air permeability.

Originality/value

This paper allows for an evaluation of high-bulk non-woven, DD and GD samples in terms of providing optimal thermal performance in clothing protecting against cold.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 July 2020

Fatemeh Zahra Hourian Tabarestani, Fatemeh Mousazadegan and Nazanin Ezazshahabi

In the present work, the thermal insulation characteristics of multilayered mittens were studied in different airflow conditions.

Abstract

Purpose

In the present work, the thermal insulation characteristics of multilayered mittens were studied in different airflow conditions.

Design/methodology/approach

In this study, the thermal behavior of four groups of mittens consisting of one two-layer and three three-layer mittens containing nonwoven wadding materials with various weights and thicknesses was investigated during the exposure to airflows with different speeds. In order to evaluate the correlation between the heat transfer rates of different mittens with the human perception of cold, a set of pair-comparison tests was performed using Thurstone's law of comparative judgment.

Findings

The analysis of the results revealed that by an increment in the weight and the thickness of the wadding material, the thermal protection performance of mittens improves. Moreover, in the presence of airflow and by increasing its speed, due to the forced convective heat loss, the outer surface temperature of the mittens decreases and therefore the conductive heat transfer rate rises. This fact leads to the transfer of higher quantity of body warmth to the environment and thus feeling of coldness. According to the results, there was a proper correlation between the subjective perception of cold and the heat transfer rate of mittens. The statistical analysis of the results clarified that the effect of mitten's structural parameters and the airflow speed on the thermal protection behavior of mittens are significant at the confidence range of 95%.

Originality/value

Mitten is one of the important personal protective clothing, especially in cold environments. Thus, the thermal resistance of them has a prominent role in the protection of the hands and fingers from cold and frostbiting.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1577

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 753