Search results

1 – 10 of 437
Article
Publication date: 8 May 2024

Hossa F. Al-Shareef, Ahmed M. Yousif, Rafaat Eleisawy, Ammar M. Mahmoud and Hamada Abdelwahab

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid…

Abstract

Purpose

This paper aims to prepare alkyd protective paint by using modified alkyd with 3,6-dichloro benzo[b]thiophene-2-carbonyl glutamic acid (DCBTGA) as a source of dicarboxylic acid and evaluating their anticorrosive properties compared with those of unmodified alkyd coatings for steel protection.

Design/methodology/approach

Short, medium and long oil alkyds, which represented as (0, 10, 20 and 30% excess-OH) according to the resin constants (Patton, 1962), were prepared through a condensation polymerization reaction via a solvent process in a one-step reaction. The modification of alkyd was carried out by using DCBTGA as a source of dicarboxylic acid. The prepared modified alkyd was confirmed by IR and NMR spectral analysis. The physicochemical, mechanical and anticorrosion performance properties of the considered modified coating formulations against unmodified blank coating were studied to confirm their application efficiency.

Findings

The best results in terms of physicochemical, mechanical and anticorrosion performance properties were found according to the following of this order activity: 30 replacements of the modifier (DCBTGA) for each hydroxyl continent were 30% Ex-OH > 20% Ex-OH > 10% Ex-OH > 0% Ex-OH, compared with that formulation containing unmodified alkyd, especially with increasing the modifier percent.

Originality/value

The prepared DCBTGA-modified resins can be used for different applications based on the type of alkyd and application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 April 2024

Shuang Huang, Haitao Zhang and Tengjiang Yu

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the…

Abstract

Purpose

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the correlation between macro rheological indexes and micro infrared spectroscopy indexes.

Design/methodology/approach

First, a dynamic shear rheometer and a bending beam rheometer were used to obtain the evaluation indexes of high- and low-temperature rheological characteristics for asphalt (virgin, SBS/styrene butadiene rubber [SBR], SBS/rubber and SBR/rubber) respectively, and its variation rules were analyzed. Subsequently, the infrared spectroscopy test was used to obtain the micro rheological characteristics of asphalt, which were qualitatively and quantitatively analyzed, and its variation rules were analyzed. Finally, with the help of GRA, the macro-micro evaluation indexes were correlated, and the improvement efficiency of composite modifiers on asphalt was explored from rheological characteristics.

Findings

It was found that the deformation resistance and aging resistance of SBS/rubber composite modified asphalt are relatively good, and the modification effect of composite modifier and virgin asphalt is realized through physical combination, and the rheological characteristics change with the accumulation of functional groups. The correlation between macro rutting factor and micro functional group index is high, and the relationship between macro Burgers model parameters and micro functional group index is also close.

Originality/value

Results reveal the basic principle of inherent-improved synergistic effect for composite modifiers on asphalt and provide a theoretical basis for improving the composite modified asphalt.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 May 2023

Md Noor Uddin Milon and Habib Zafarullah

Money laundering (ML) is a major criminal offence stemming from unethical practices by personnel on the ground at Chattogram Port, an important import and export facility in…

Abstract

Purpose

Money laundering (ML) is a major criminal offence stemming from unethical practices by personnel on the ground at Chattogram Port, an important import and export facility in Bangladesh. Because money can be more easily laundered through imports, it is necessary to investigate the dubious process in this sector. This study aims to identify the items most regularly used for easy ML and the factors contributing to their vulnerability.

Design/methodology/approach

This research uses a qualitative approach and analyses information from primary sources. Data is obtained from customs officials, port authority personnel, importers and customs brokers through semi-structured questionnaires. Although there are many techniques for ML, this study only found three most overwhelming: under-invoicing, over-invoicing and misdeclaration. A few case studies have been used based on newspaper reports and the internet to triangulate the qualitative data.

Findings

Four import items – food products, garments, capital machinery and chemicals – have a higher risk of ML. This study also revealed that money launderers prefer under-invoicing food and garment items. Misdeclaration is more commonly associated with capital machinery and chemical items. Over-invoicing, on the other hand, is only prevalent in government purchases. The port authorities need to pay particular attention to these issues.

Research limitations/implications

As ML is an ongoing activity that changes over time, the findings of this research are circumscribed by the data collected at a single point in time. Additionally, this research did not consider alternative laundering methods.

Practical implications

The research results can provide a basis for creating effective anti-money laundering (AML) strategies to assist with sustainable economic growth.

Social implications

Developing effective AML measures can help combat corruption and establish good governance in the country and support human well-being.

Originality/value

This paper presents original research findings based on technical analysis. The Chattogram Port Authority and the National Board of Revenue have accepted and used the main findings in a collaborative action plan to tackle ML. The Bangladesh Bank, the country’s central bank, has also incorporated the necessary guidelines and regulations into the Money Laundering Prevention Act, 2012.

Details

Journal of Money Laundering Control, vol. 27 no. 3
Type: Research Article
ISSN: 1368-5201

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 7 May 2024

Pingping Hou, Zheng Qian, Meng Xin Hu, Ji Qi Liu, Jun Zhang, Wei Zhao, Xiao Li, Yong Wang, HongYan Huang and Qian Ping Ran

The purpose of this study is to explore the interfacial adhesion between superhydrophobic coatings FC-X (X = 1%, 2%, 3%, 4% and 5%) and the concrete substrate, along with the…

Abstract

Purpose

The purpose of this study is to explore the interfacial adhesion between superhydrophobic coatings FC-X (X = 1%, 2%, 3%, 4% and 5%) and the concrete substrate, along with the impact of FC-X on the water repellency characteristics of the concrete substrate.

Design/methodology/approach

One synthetic step was adopted to prepare novel F-SiO2 NP hybrid fluororesin coating. The impact of varying mass fractions of F-SiO2 NPs on the superhydrophobicity of FC-X was analyzed and subsequently confirmed through water contact angle (WCA) measurements. Superhydrophobic coatings were simply applied to the concrete substrate using a one-step spraying method. The interfacial adhesion between FC-X and the concrete substrate was analyzed using tape pasting tests and abrasion resistance measurements. The influence of FC-X on the water repellency of the concrete substrate was investigated through measurements of water absorption, impermeability and electric flux.

Findings

FC-4% exhibits excellent superhydrophobicity, with a WCA of 157.5° and a sliding angle of 2.3°. Compared to control sample, FC-X exhibits better properties, including chemical durability, wear resistance, adhesion strength, abrasion resistance, water resistance and impermeability.

Practical implications

This study offers a thorough investigation into the practical implications of enhancing the durability and water repellency of concrete substrates by using superhydrophobic coatings, particularly FC-4%, which demonstrates exceptional superhydrophobicity alongside remarkable chemical durability, wear resistance, adhesion strength, abrasion resistance, water resistance and impermeability.

Originality/value

Through the examination of the interfacial adhesion between FC-X and the concrete substrate, along with an assessment of FC-X’s impact on the water repellency of the concrete, this paper provides valuable insights into the practical application of superhydrophobic coatings in enhancing the durability and performance of concrete materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 2024

La Ode Nazaruddin, Md Tota Miah, Aries Susanty, Maria Fekete-Farkas, Zsuzsanna Naárné Tóth and Gyenge Balázs

This study aims to uncover apple preference and consumption in Indonesia, to disclose the risk of non-halal contamination of apples and the importance of maintaining the halal…

Abstract

Purpose

This study aims to uncover apple preference and consumption in Indonesia, to disclose the risk of non-halal contamination of apples and the importance of maintaining the halal integrity of apples along the supply chain and to uncover the impacts of food miles of apples along supply chain segmentation.

Design/methodology/approach

This study adopted mixed research methods under a fully mixed sequential dominant status design (QUAN → qual). Data were collected through a survey in some Indonesian provinces (N = 396 respondents). Samples were collected randomly from individual consumers. The qualitative data were collected through interviews with 15 apple traders in Indonesia. Data were analysed using crosstab, chi-square and descriptive analysis.

Findings

First, Muslim consumers believe in the risk of chemical treatment of apples because it can affect the halal status of apples. Second, Indonesian consumers consider the importance of halal certification of chemical-treated apples and the additives for apple treatments. Third, the insignificance of domestic apple preference contributes to longer food miles at the first- and middle-mile stages (preference for imported apples). Fourth, apple consumption and shopping distance contribute to the longer food miles problem at the last-mile stage. Fifth, longer food miles have negative impacts, such as emissions and pollution, food loss and waste, food insecurity, financial loss, slow development of the local economy and food unsafety.

Practical implications

This research has implications for the governments, farmers, consumers (society) and business sectors.

Originality/value

This study proposes a framework of food miles under a halal supply chain (halal food miles) to reduce the risk of food miles and improve halal integrity. The findings from this research have theoretical implications for the development of the food mile theory, halal food supply chain and green supply chain.

Details

Journal of Islamic Marketing, vol. 15 no. 5
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 27 March 2024

Ilija Djekic and Nada Smigic

The main purpose of this paper was to evaluate the validation process of food safety control measures.

Abstract

Purpose

The main purpose of this paper was to evaluate the validation process of food safety control measures.

Design/methodology/approach

The validation of control measures has been analyzed at 50 food companies in Serbia. The sample included companies that produce food of both plant and animal origin and have certified food safety management systems. A total of 156 control measures that combat physical hazards (41.6%), followed by microbial hazards (34.0%) and chemical hazards (24.4%), have been analyzed. To enable quantification of the validation protocols, each control measure was assigned a score.

Findings

The validation scores showed that the highest level of validation was observed in large companies, as opposed to small and medium-sized companies (p < 0.05). The type of food safety hazards and the food sector did not reveal any statistical differences in-between the scores. The main approach to validating control measures was referring to the technical documentation of equipment used (52.6%), followed by scientific and legal requirements (30.7%). Less than 20% of the analyzed control measures were validated with operational data collected on-site. No mathematical modeling was observed for the sampled food companies. Future steps should include the development of validation guides for different types of control measures and training modules.

Practical implications

This study can serve as an improvement guide for food safety consultants, food safety auditors, certification bodies, inspection services, food technologists and food managers.

Originality/value

This study is one of the first to provide an insight into how food companies validate their control measures to combat microbial, chemical and physical food safety hazards.

Details

British Food Journal, vol. 126 no. 6
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 6 May 2024

Mohammad Vahid Ehteshamfar, Amir Kiadarbandsari, Ali Ataee, Katayoun Ghozati and Mohammad Ali Bagherkhani

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However…

Abstract

Purpose

Stereolithography (SLA) additive manufacturing (AM) technique has enabled the production of inconspicuous and aesthetically pleasing orthodontics that are also hygienic. However, the staircase effect poses a challenge to the application of invisible orthodontics in the dental industry. The purpose of this study is to implement chemical postprocessing technique by using isopropyl alcohol as a solvent to overcome this challenge.

Design/methodology/approach

Fifteen experiments were conducted using a D-optimal design to investigate the effect of different concentrations and postprocessing times on the surface roughness, material removal rate (MRR), hardness and cost of SLA dental parts required for creating a clear customized aligner, and a container was constructed for chemical treatment of these parts made from photocurable resin.

Findings

The study revealed that the chemical postprocessing technique can significantly improve the surface roughness of dental SLA parts, but improper selection of concentration and time can lead to poor surface roughness. The optimal surface roughness was achieved with a concentration of 90 and a time of 37.5. Moreover, the dental part with the lowest concentration and time (60% and 15 min, respectively) had the lowest MRR and the highest hardness. The part with the highest concentration and time required the greatest budget allocation. Finally, the results of the multiobjective optimization analysis aligned with the experimental data.

Originality/value

This paper sheds light on a previously underestimated aspect, which is the pivotal role of chemical postprocessing in mitigating the adverse impact of stair case effect. This nuanced perspective contributes to the broader discourse on AM methodologies, establishing a novel pathway for advancing the capabilities of SLA in dental application.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 May 2024

Hui Zhao, Shunzhen Ren, Zhengbo Zhong, Zhipeng Li and Tianhui Ren

This study aims to reveal the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease.

Abstract

Purpose

This study aims to reveal the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease.

Design/methodology/approach

The authors prepared a molybdenum dialkyl dithiocarbamate (MoDTC) and revealed the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease by combining with ZDDP and P-containing and S-free additives.

Findings

The MoDTC the authors prepared has good friction-reducing and anti-wear properties in aluminum-based grease and has an obvious synergistic effect with ZDDP. MoDTC and ZDDP have a significant synergistic effect on the tribological properties in aluminum-based grease, mainly because of the formation of phosphates and metaphosphates as well as more MoS2 in the friction film. P element plays a facilitating role in the chemical conversion of MoDTC to MoS2.

Originality/value

The experiments of MoDTC with tributyl phosphate and trimethylphenyl phosphate confirm that the P element plays a facilitating role in the chemical conversion of MoDTC into MoS2.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0410

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 437