Search results

1 – 10 of over 2000
Article
Publication date: 1 July 2014

Meng H. Lean and Wei-Ping L. Chu

The purpose of this paper is to describe a rapid and robust axisymmetric hybrid algorithm to create dynamic temporal and spatial charge distributions, or charge map, in the…

Abstract

Purpose

The purpose of this paper is to describe a rapid and robust axisymmetric hybrid algorithm to create dynamic temporal and spatial charge distributions, or charge map, in the simulation of bipolar charge injection using Schottky emission and Fowler-Nordheim tunneling, field-dependent transport, recombination, and bulk and interfacial trapping/de-trapping for layered polymer films spanning the range from initial injection to near breakdown.

Design/methodology/approach

This hybrid algorithm uses a source distribution technique based on an axisymmetric boundary integral equation method (BIEM) to solve the Poisson equation and a fourth-order Runge-Kutta (RK4) method with an upwind scheme for time integration. Iterative stability is assured by satisfying the Courant-Friedrichs-Levy (CFL) stability criterion. Dynamic charge mapping is achieved by allowing conducting and insulating boundaries and material interfaces to be intuitively represented by equivalent free and bound charge distributions that collectively satisfy all local and far-field conditions.

Findings

Charge packets cause substantial increase of electric stress and could accelerate the breakdown of polymeric capacitors. Conditions for the creation of charge packets are identified and numerically demonstrated for a combination of impulsive step excitation, high charge injection, and discontinuous interface.

Originality/value

Metallized bi-axially oriented polypropylene (BOPP) dielectric thin film capacitor with self-clearing and enhanced current carrying capability offer an inexpensive and lightweight alternative for efficient power conditioning, energy storage, energy conversion, and pulsed power. The originality is the comprehensive physics and multi-dimensional modeling which span the dynamic range from initial injection to near breakdown. This model has been validated against some empirical data and may be used to identify failure mechanisms such as charge packets, gaseous voids, and electroluminescence. The value lies in the use of this model to develop mitigation strategies, including re-designs and materials matching, to avoid these failure mechanisms.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 2003

Jean‐Yves Rosaye, Pierre Mialhe and Jean‐Pierre Charles

The present experiments are intended to help characterize defects in very thin MOS oxide and at its Si/SiO2 interface using a temperature‐dependent electrical characterization…

Abstract

The present experiments are intended to help characterize defects in very thin MOS oxide and at its Si/SiO2 interface using a temperature‐dependent electrical characterization method, high low temperature capacitance voltage method and, especially, to investigate high temperature range. Oxide‐fixed traps are differentiated from slow‐state traps and from fast‐state traps by evaluating their electrical behaviour at different temperatures. The analysis points out the excess current after Fowler Nordheim electron injection based on hole generation, trapping, and hopping transport at high temperatures. The defect relaxation property versus temperature is investigated and defect relaxation activation energies are calculated. Creation mechanisms of interface states are especially identified by injection at different temperatures and these are compared with the other two kinds of defects. Fast‐state traps and all defect cross‐sections are calculated along and their creation activation energies are determined from Arrhenius plots.

Details

Microelectronics International, vol. 20 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 17 June 2022

Amin Shamsi, Alireza Ganjovi and Amir Abbas Shayegani Akmal

The purpose of this study is to numerically examine the heat transfer and transport of space charges in the solid insulating materials [low density polyethylene (LDPE), flame…

Abstract

Purpose

The purpose of this study is to numerically examine the heat transfer and transport of space charges in the solid insulating materials [low density polyethylene (LDPE), flame retardant type 4 (FR4), Polytetrafluoroethylene (PTFE)] using the transmission line modeling (TLM) method. Besides, a comprehensive study is performed on the mutual influences of heat transfer and space charges transport within the solid dielectric bulk.

Design/methodology/approach

The obtained governing equations including continuity and circuit equations are coupled with heat transfer equations, and they are solved via fourth-order Runge–Kutta method.

Findings

The electric potential and field, current density and temperature distribution are calculated. It is shown that compared with FR4 and PTFE, the temperature increment rate in LDPE is much lower. Moreover, the heat transfer in the solid insulating materials bulk increases the homo-charges density and temperature in the vicinity of electrodes. Hence, the reduction in electric field is reflected in the potential deformations in the proximity of electrodes. Furthermore, where the electric field is maximized, the temperature is minimized.

Research limitations/implications

This study is restricted to two-dimensional problems.

Originality/value

Interestingly, because of the lower temperature in LDPE, the current density and their increment rates in LDPE are much lower than that in FR4 and PTFE dielectric materials.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 22 November 2018

Mohamed Issam Elkhazen, Walid Hassen, Hakan F. Öztop, Lioua Kolsi, Abdullah A.A.A. Al-Rashed, Mohamed Naceur Borjini and Mohamed E. Ali

The purpose of this work is to highlight the effects of partial unipolar injection on electro-thermo-convection (ETC) in dielectric liquid contained between two eccentric…

Abstract

Purpose

The purpose of this work is to highlight the effects of partial unipolar injection on electro-thermo-convection (ETC) in dielectric liquid contained between two eccentric cylinders.

Design/methodology/approach

A finite volume method was used to solve governing equations. The study is performed for different parameters, such as radius ratio (0.2 ≤ Γ ≤ 0.6), dimensionless electric Rayleigh number (0 ≤ T ≤ 900), eccentricity (−0.4 ≤ e ≤ 0.4) and thermal Rayleigh number (10 ≤ Ra ≤ 5.105).

Findings

It is found that heat transfer increases with increase in dimensionless electric Rayleigh number and eccentricity ratio.

Originality/value

The originality of this work is to analyze the ETC in dielectric liquid subjected to partial unipolar injection between two eccentric cylinders

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1992

AE Davies and G Chen

Polymeric insulation is progressively replacing traditional materials in cables, switchgear and machines. The fundamental electricl properties of polymer dielectrics such as…

Abstract

Polymeric insulation is progressively replacing traditional materials in cables, switchgear and machines. The fundamental electricl properties of polymer dielectrics such as conduction and breakdown are strongly influenced by the presence of defect centres (voids and inclusions) and trapped charge. A thorough understanding of the role of trapped charge in the breakdown process is essential if the full potential of these new materials is to be realised.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 1
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 September 1996

Don Braggins

Explains the implications of available options in solid state imaging sensors. Focuses on features of different types of imaging sensor, citing the most general division between…

179

Abstract

Explains the implications of available options in solid state imaging sensors. Focuses on features of different types of imaging sensor, citing the most general division between types as being between area scan and line scan. Looks in some depth at these two types of sensor and goes on to consider factors such as asynchronous triggering, the separation of exposure and readout time and the maintenance of spatial digitization. Provides a list of supplier addresses.

Details

Sensor Review, vol. 16 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 April 2014

Bongani C. Mabuza and Saurabh Sinha

The purpose of this paper was to present the results of the three types of FG transistors that were investigated. The reliability issues of oxide thickness due to programming…

Abstract

Purpose

The purpose of this paper was to present the results of the three types of FG transistors that were investigated. The reliability issues of oxide thickness due to programming, fabrication defects and process variation may cause leakage currents and thus charge retention failure in the floating gate (FG).

Design/methodology/approach

The tunnelling and electron injection methods were applied to program FG devices of different lengths (180 and 350 nm) and coupling capacitor sizes. The drain current and threshold voltage changes were determined for both gate and drain voltage sweep. The devices were fabricated using IBM 130 nm process technology.

Findings

Current leakages are increasing with device scaling and reducing the charge retention time. During programming, charge traps may occur in the oxide and prevent further programming. Thus, the dominant factors are the reliability of oxide thickness to avoid charge traps and prevent current/charge leakages in the FG devices. The capacitive coupling (between the tunnelling and electron injection capacitors) may contribute to other reliability issues if not properly considered.

Originality/value

Although the results have raised further research questions, as revealed by certain reliability issues, they have shown that the use of FGs with nanoscale technology is promising and may be suitable for memory and switching applications.

Details

Microelectronics International, vol. 31 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 November 2023

Khaled Hallak, Fulbert Baudoin, Virginie Griseri, Florian Bugarin, Stephane Segonds, Severine Le Roy and Gilbert Teyssedre

The purpose of this paper is to optimize and improve a bipolar charge transport (BCT) model used to simulate charge dynamics in insulating polymer materials, specifically…

Abstract

Purpose

The purpose of this paper is to optimize and improve a bipolar charge transport (BCT) model used to simulate charge dynamics in insulating polymer materials, specifically low-density polyethylene (LDPE).

Design/methodology/approach

An optimization algorithm is applied to optimize the BCT model by comparing the model outputs with experimental data obtained using two kinds of measurements: space charge distribution using the pulsed electroacoustic (PEA) method and current measurements in nonstationary conditions.

Findings

The study provides an optimal set of parameters that offers a good correlation between model outputs and several experiments conducted under varying applied fields. The study evaluates the quantity of charges remaining inside the dielectric even after 24 h of short circuit. Moreover, the effects of increasing the electric field on charge trapping and detrapping rates are addressed.

Research limitations/implications

This study only examined experiments with different applied electric fields, and thus the obtained parameters may not suit the experimental outputs if the experimental temperature varies. Further improvement may be achieved by introducing additional experiments or another source of measurements.

Originality/value

This work provides a unique set of optimal parameters that best match both current and charge density measurements for a BCT model in LDPE and demonstrates the use of trust region reflective algorithm for parameter optimization. The study also attempts to evaluate the equations used to describe charge trapping and detrapping phenomena, providing a deeper understanding of the physics behind the model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 1996

G. Chen and A.E. Davies

The electric stress profiles of a needle‐plane electrode system used in the laboratory for investigation of tree initiation and growth have been studied. Results from analytical…

Abstract

The electric stress profiles of a needle‐plane electrode system used in the laboratory for investigation of tree initiation and growth have been studied. Results from analytical solution based on a hyperboloid shaped needle tend to differ from those from experiments. One reason is that in practice it is difficult to produce a needle of such a shape. Moreover, researchers have used various shaped needles for their tests. Presents the effects of these needle parameters on the electric stress profile. To simulate the presence of space charge, examines two models, i.e. spherical and cylindrical regions around the tip. For simplicity, the space charge was assumed to be uniformly distributed in the confined region. Results show that space charges can enhance or reduce the electric stress adjacent to the needle tip depending on the nature of the applied voltage.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 15 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 September 2020

Rui Liu, Haocheng Ji and Minxiang Wei

The purpose of this paper is to investigate power performance, economy and hydrocarbons (HC)/carbon monoxide (CO) emissions of diesel fuel on a two-stoke direct injection (DI…

Abstract

Purpose

The purpose of this paper is to investigate power performance, economy and hydrocarbons (HC)/carbon monoxide (CO) emissions of diesel fuel on a two-stoke direct injection (DI) spark ignition (SI) engine.

Design/methodology/approach

Experimental study was carried out on a two-stroke SI diesel-fuelled engine with air-assisted direct injection, whose power performance and HC/CO emissions characteristics under low-load conditions were analysed according to the effects of ignition energy, ignition advance angle (IAA), injection timing angle and excess-air-ratio.

Findings

The results indicate that, for the throttle position of 10%, a large IAA with adequate ignition energy effectively increases the power and decrease the HC emission. The optimal injection timing angle for power and fuel consumption is 60° crank angle (CA) before top dead centre (BTDC). Lean mixture improves the power performance with the HC/CO emissions greatly reduced. At the throttle position of 20%, the optimal IAA is 30°CA BTDC. The adequate ignition energy slightly improves the power output and greatly decreases HC/CO emissions. Advancing the injection timing improves the power and fuel consumption but should not exceed the exhaust port closing timing in case of scavenging losses. Burning stoichiometric mixture achieves maximum power, whereas burning lean mixture obviously reduces the fuel consumption and the HC/CO emissions.

Practical implications

Gasoline has a low flash point, a high-saturated vapour pressure and relatively high volatility, and it is a potential hazard near a naked flame at room temperature, which can create significant security risks for its storage, transport and use. The authors adopt a low volatility diesel fuel for all vehicles and equipment to minimise the number of different devices using various fuels and improve the potential military application safety.

Originality/value

Under low-load conditions, the two stroke port-injected SI engine performance of burning heavy fuels including diesel or kerosene was shown to be worse than those of gasoline. The authors have tried to use the DI method to improve the performance of the diesel-fuelled engine in starting and low-load conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 2000