Search results

1 – 10 of over 54000
Article
Publication date: 15 June 2015

Wenxiong Huang and Ke Xu

Cosserat continuum models are motivated by modeling size effects in materials with micro-structure. While elastic Cosserat continuum models can reproduce size effects in…

Abstract

Purpose

Cosserat continuum models are motivated by modeling size effects in materials with micro-structure. While elastic Cosserat continuum models can reproduce size effects in deformation stiffness, inelastic models are often used to capture localization and post failure behavior of materials. In application of inelastic Cosserat models, parameter determination is a difficult issue not fully addressed. The purpose of this paper is to discuss parameter-related characteristic lengths in Cosserat continuum modeling of granular materials.

Design/methodology/approach

Based on a Cosserat continuum extension of a hypoplastic model for granular media, interpretation of additional parameters are sought through analysis of simple one-dimensional shear. Governing equations are obtained, respectively, for small strain shear formation and for stead flow state in localized zone.

Findings

Two characteristic lengths are obtained analytically for granular materials: one governs the size effect near boundaries in shear deformation, the other scales the thickness of shear band in failure. While both characteristic lengths are proportional to the micro-structure length (the mean grain diameter), the former is related to the micro-stiffness parameter, and the latter depends on the micro-strength parameter. The results reveal a connection between size effects, the micro-structure length and the material properties. The work also provides a new perspective to inelastic Cosserat continuum models, as well as a possible way for determination micro-deformation and strength parameters.

Originality/value

The results reveal a connection between size effects, the micro-structure length and the material properties. The work provides a new perspective and an interpretation to the micro-deformation and strength parameters of inelastic Cosserat continuum models, as well as a possible way for determination of these parameters.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2008

A.R. Moghassem

Grey cotton fibers with a mean fiber length and fineness of 29 mm and 4.2 micronair was pretreated, scoured and dyed. Three ring yarns were spun separately from 100% grey cotton…

Abstract

Grey cotton fibers with a mean fiber length and fineness of 29 mm and 4.2 micronair was pretreated, scoured and dyed. Three ring yarns were spun separately from 100% grey cotton (R.R.Y.), 50% dyed and 50% grey cotton blend (M.R.Y.) and 100% dyed cotton (D.R.Y.). The extent of fiber damage was assessed by measuring the length and the mechanical characteristics of cotton fibers after passing the fibers through the lap machine and the draw frame II. Properties of R.R.Y., M.R.Y. and D.R.Y. samples were examined. In terms of tenacity and elongation at break, grey and dyed cotton fibers, which were selected after being processed by the lap machine and the draw frame II, were very similar. The fiber length by number and weight of grey cotton was longer than that of dyed cotton, while the amount of fiber nep and short fiber content of dyed cotton were more than those of grey cotton.

The three yarn samples were the same in terms of elongation at break. The tenacity of R.R.Y. was the highest but the yarn sample was the lowest in terms of coefficients of mass variation (Cv%), imperfection and hairiness in comparison with the M.R.Y. and D.R.Y. samples.

Details

Research Journal of Textile and Apparel, vol. 12 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 30 July 2018

Lei Li, Daqing He, Chengzhi Zhang, Li Geng and Ke Zhang

Academic social (question and answer) Q&A sites are now utilised by millions of scholars and researchers for seeking and sharing discipline-specific information. However, little…

1626

Abstract

Purpose

Academic social (question and answer) Q&A sites are now utilised by millions of scholars and researchers for seeking and sharing discipline-specific information. However, little is known about the factors that can affect their votes on the quality of an answer, nor how the discipline might influence these factors. The paper aims to discuss this issue.

Design/methodology/approach

Using 1,021 answers collected over three disciplines (library and information services, history of art, and astrophysics) in ResearchGate, statistical analysis is performed to identify the characteristics of high-quality academic answers, and comparisons were made across the three disciplines. In particular, two major categories of characteristics of the answer provider and answer content were extracted and examined.

Findings

The results reveal that high-quality answers on academic social Q&A sites tend to possess two characteristics: first, they are provided by scholars with higher academic reputations (e.g. more followers, etc.); and second, they provide objective information (e.g. longer answer with fewer subjective opinions). However, the impact of these factors varies across disciplines, e.g., objectivity is more favourable in physics than in other disciplines.

Originality/value

The study is envisioned to help academic Q&A sites to select and recommend high-quality answers across different disciplines, especially in a cold-start scenario where the answer has not received enough judgements from peers.

Details

Aslib Journal of Information Management, vol. 70 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 12 January 2022

Andrey Kozhevnikov, Rudie P.J. Kunnen, Gregor E. van Baars and Herman J.H. Clercx

This study aims to examine the feasibility of feedforward actuation of the recoater blade position to alleviate the resin surface non-uniformity while moving over deep-to-shallow…

Abstract

Purpose

This study aims to examine the feasibility of feedforward actuation of the recoater blade position to alleviate the resin surface non-uniformity while moving over deep-to-shallow transitions of submerged (already cured) geometric features.

Design/methodology/approach

A two-dimensional computational fluid dynamics (CFD) model has been used to determine optimized blade actuation protocols to minimize the resin surface non-uniformity. An experimental setup has been designed to validate the feasibility of the proposed protocol in practice.

Findings

A developed protocol for the blade height actuation is applied to a rectangular stair-like configuration of the underlying part geometry. The evaluation of the actuation protocol revealed the importance of two physical length scales, the capillary length and the size of the flow recirculation cell below in the liquid resin layer below the blade. They determine, together with the length scales defining the topography (horizontal extent and depth), the optimal blade trajectory. This protocol has also shown its efficiency for application to more complicated shapes (and, potentially, for any arbitrary geometry).

Practical implications

This study shows that incorporation of a feedforward control scheme in the recoating system might significantly reduce (by up to 80%) the surface unevenness. Moreover, this improvement of performances does not require major modifications of the existing architecture.

Originality/value

The results presented in this work demonstrate the benefits of the integration of the feedforward control to minimize the leading edge bulges over underlying part geometries in stereolithography.

Article
Publication date: 7 May 2024

Fang Haifeng, Jun Zhang, Hanlin Sun and Lihua Cai

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims…

Abstract

Purpose

As a new type of spinning machine, the jet spinning machine absorbs the carding system of the rotating cup spinning series and the nozzle part of the jet spinning. This paper aims to intends to introduce the double carding structure currently studied by the rotating cup spinning into the jet spinning machine, and analyze the influence of the nozzle characteristic number on the flow field in the double carding structure to verify the advantages of the double carding structure.

Design/methodology/approach

The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field. The influence of the nozzle characteristic number on the flow pattern in the four models is compared. The advantages and disadvantages of a conventional single comb and a double comb with a bypass channel on the longer side of the transport channel as an additional air supply channel are also evaluated.

Findings

At present, the double comb technology of rotary cup spinning is being studied at home and abroad to improve the spinning quality and improve the difficult problem of mixed yarn with large difference in processing fiber properties. At present, the jet spinning machine combines the advantages of rotary cup spinning and jet spinning, absorbing the comb system of rotary cup spinning series and the nozzle part of jet spinning. Therefore, it is found that the introduction of the double-split structure into the wool jet spinning has research value to improve the spinning quality.

Originality/value

The purpose of this paper is to refer to the previous research on the double comb structure in rotary spinning, and to apply the double comb structure in the new jet spinning machine to improve the spinning quality. The simulation is used to evaluate the performance of single/double split jet spinning and nozzle feature number, verify the technical advantages of double split jet spinning and evaluate the influence of nozzle feature number on flow field.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 March 2022

Tarek Sallam and Ahmed M. Attiya

The purpose of this paper is to build a neural network (NN) inverse model for the multi-band unequal-power Wilkinson power divider (WPD). Because closed-form expressions of the…

88

Abstract

Purpose

The purpose of this paper is to build a neural network (NN) inverse model for the multi-band unequal-power Wilkinson power divider (WPD). Because closed-form expressions of the inverse input–output relationship do not exist, the NN becomes an appropriate choice, because it can be trained to learn from the data in inverse modeling. The design parameters of WPD are the characteristic impedances, lengths of the transmission line sections and the isolation resistors. The design equations used to train the NN inverse model are based on the even–odd mode analysis.

Design/methodology/approach

An inverse model of a multi-band unequal WPD using NNs is presented. In inverse modeling of a microwave component, the inputs to the model are the required electrical parameters such as reflection coefficients, and the outputs of the model are the geometrical or the physical parameters.

Findings

For verification purposes, a quad-band WPD and a penta-band WPD are designed. The results of the full-wave simulations verify the validity of the design procedure. The resulting NN model outperforms traditional time-consuming optimization procedures in terms of computation time with acceptable accuracy. The designed WPDs using NN are implemented by microstrip lines and verified by using full-wave analysis based on high-frequency structure simulator (HFSS). The results of the microstrip WPDs have good agreements with the corresponding results obtained by using ideal transmission line sections.

Originality/value

The associated time-consuming procedure and computational burden in realizing WPD through optimization are major disadvantages; needless to mention the substantial increase in optimization time because of the multi-band design. NNs are one of the best candidates in addressing the abovementioned challenges, owing to their ability to process the interrelation between electrical and geometrical/physical characteristics of the WPD in a superfast manner.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 August 2023

Zhiqi Liu, Tanghong Liu, Hongrui Gao, Houyu Gu, Yutao Xia and Bin Xu

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve…

Abstract

Purpose

Constructing porous wind barriers is one of the most effective approaches to increase the running safety of trains on viaducts in crosswinds. This paper aims to further improve the wind-sheltering performance of the porous wind barriers.

Design/methodology/approach

Improved delayed detached eddy simulations based on the k-ω turbulence model were carried out, and the results were validated with wind tunnel tests. The effects of the hole diameter on the flow characteristics and wind-sheltering performance were studied by comparing the wind barriers with the porosity of 21.6% and the hole diameters of 60 mm–360 mm. The flow characteristics above the windward and leeward tracks were analyzed, and the wind-sheltering performance of the wind barriers was assessed using the wind speed reduction coefficients.

Findings

The hole diameters affected the jet behind the wind barriers and the recirculation region above the tracks. Below the top of the wind barriers, the time-averaged velocity first decreased and then increased with the increase in the hole diameter. The wind barrier with the hole diameter of 120 mm had the best wind-sheltering performance for the windward track, but such barrier might lead to overprotection on the leeward track. The wind-sheltering performance of the wind barriers with the hole diameters of 240 mm and 360 mm was significantly degraded, especially above the windward track.

Originality/value

The effects of the hole diameters on the wake and wind-sheltering performance of the wind barriers were studied, by which the theoretical basis is provided for a better design of the porous wind barrier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 19 May 2009

Mina Westman, Dalia Etzion and Shoshi Chen

In this chapter, we discuss the impact of business trips on travelers and their families from the perspective of respite, thus embedding business trips in stress theories. We…

Abstract

In this chapter, we discuss the impact of business trips on travelers and their families from the perspective of respite, thus embedding business trips in stress theories. We begin by reviewing the literature on respite and recovery. Focusing on the role of travelers’ resources, we relate the phenomenon of business trips to conservation of resources (COR) and job demands-resource (JD-R) theories. We then discuss the negative and positive characteristics and outcomes of business trips. We offer evidence from interviews with business travelers regarding the special characteristics and consequences of business trips. We summarize by addressing the question of whether business trips are a special kind of respite.

Details

Current Perspectives on Job-Stress Recovery
Type: Book
ISBN: 978-1-84855-544-0

Article
Publication date: 26 August 2014

Saman Rashidi, Reza Masoodi, Masoud Bovand and Mohammad Sadegh Valipour

– The purpose of this paper is to study steady, laminar, and two-dimensional flow around and through a porous diamond cylinder.

Abstract

Purpose

The purpose of this paper is to study steady, laminar, and two-dimensional flow around and through a porous diamond cylinder.

Design/methodology/approach

The governing equations are written for two zones: the clear fluid zone and the porous zone. For the porous zone, the modified Navier-Stokes equations, including Darcy, Brinkman, and Forcheimer terms are used. The governing equations are solved numerically using a finite volume approach.

Findings

It was found that as the apex angle and Reynolds number decreases the wake length decreases and the separation is delayed.

Originality/value

There is no published research in the literature about flow around and into porous diamond cylinders to study the effect of important parameters, such as apex angle, Darcy number, and Reynolds number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 July 2022

Shuxiang Tian, Guizhi Xu, Huilan Yang and Paul B. Fitzgerald

The purpose of this paper is to examine the changes of brain functional network after electroconvulsive therapy (ECT) treatment in major depressive disorder (MDD).

Abstract

Purpose

The purpose of this paper is to examine the changes of brain functional network after electroconvulsive therapy (ECT) treatment in major depressive disorder (MDD).

Design/methodology/approach

In this study, resting electroencephalography (EEG) is used to explore the changes in spectral power density, functional connectivity and network topology elicited by an acute open-label course of ECT in a group of 19 MDD subjects. The brain functional network based on Pearson correlation is constructed in a continuous threshold space (0.38–0.59). Complex network theory is used to analyze the network characteristic such as the length of the characteristic path, clustering coefficient, degree, betweenness centrality, global efficiency and small-world architecture.

Findings

The results show that ECT increased the spectral power density of Delta, Theta and Alpha1 bands and the full frequency. ECT increases the functional connectivity in Delta and full frequency and reduces the functional connectivity in Alpha2 band. In the selected threshold space, the clustering coefficient, global efficiency and small-world attributes of the network are changed significantly after ECT.

Originality/value

The findings indicate that resting EEG could effectively characterize the changes of brain functional networks following ECT in MDD. The results provide a theoretical basis to explore the neurophysiological mechanism of ECT in the field of MDD treatment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 54000