Search results

1 – 10 of over 20000
Open Access
Article
Publication date: 6 June 2022

Marcia Combs, Casey Hazelwood and Randall Joyce

Digital voice assistants use wake word engines (WWEs) to monitor surrounding audio for detection of the voice assistant's name. There are two failed conditions for a WWE, false…

1207

Abstract

Purpose

Digital voice assistants use wake word engines (WWEs) to monitor surrounding audio for detection of the voice assistant's name. There are two failed conditions for a WWE, false negative and false positive. Wake word false positives threaten a loss of personal privacy because, upon activation, the digital assistant records audio to the voice cloud service for processing.

Design/methodology/approach

This observational study attempted to identify which Amazon Alexa wake word and Amazon Echo smart speaker resulted in the fewest number of human voice false positives. During an eight-week period, false-positive data were collected from four different Amazon Echo smart speakers located in a small apartment with three female roommates.

Findings

Results from this study suggest the number of human voice false positives are related to wake word selection and Amazon Echo hardware. Results from this observational study determined that the wake word Alexa resulted in the fewest number of false positives.

Originality/value

This study suggests Amazon Alexa users can better protect their privacy by selecting Alexa as their wake word and selecting smart speakers with the highest number of microphones in the far-field array with 360-degree geometry.

Details

Organizational Cybersecurity Journal: Practice, Process and People, vol. 2 no. 2
Type: Research Article
ISSN: 2635-0270

Keywords

Article
Publication date: 4 September 2017

Frank Holzäpfel

In this study, 12 potential wake vortex encounters that were reported at a major European airport have been investigated. Because almost all encounters occurred in ground…

Abstract

Purpose

In this study, 12 potential wake vortex encounters that were reported at a major European airport have been investigated. Because almost all encounters occurred in ground proximity, most pilots conducted a go-around. The primary purpose of this study is to discriminate between incidents caused by wake vortices or rather by effects like wind shear or turbulence. Detailed knowledge of real-world encounter scenarios and identification of worst-case conditions during the final approach constitute highly relevant background information to assess the standard scenario used for the definition of revised wake turbulence separations.

Design/methodology/approach

Wake vortex predictions using the probabilistic two-phase wake vortex model (P2P) are used to investigate the incidents in detail by using data from the flight data recorder, meteorological instrumentation at the airport and numerical weather prediction.

Findings

In the best documented cases, the flight tracks through the vortices could be reconstructed in good agreement with wake vortex predictions and recorded aircraft reactions. Out of the eight plausible wake vortex encounters, five were characterized by weak crosswinds below 1.5 m/s combined with tailwinds. This meteorological situation appears favourable for encounters because, on the one hand, weak crosswinds may compensate the self-induced lateral propagation of the upwind vortex, such that it may hover over the runway directly in the flight path of the following aircraft. On the other hand, tailwinds limit the propagation of the so-called end effects caused by the breakdown of lift during touchdown.

Practical implications

The installation of plate lines beyond the runway tails may improve safety by reducing the number of wake vortex encounters.

Originality/value

The conducted investigations provide high originality and value for both science and operational application.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 2014

Fariba Ajalli and Mahmoud Mani

The main aim of the present work is to examine the effects of trailing edge strip (TES) on the wake region of a plunging airfoil that oscillates prior and beyond the static stall…

Abstract

Purpose

The main aim of the present work is to examine the effects of trailing edge strip (TES) on the wake region of a plunging airfoil that oscillates prior and beyond the static stall angle of attack.

Design/methodology/approach

In this study, experimental investigations were carried out to explore the wake characteristics of a plunging Eppler 361airfoil equipped with TES flap. The experiments involved measurements of flapped and unflapped airfoil wake velocity for the range of initial AOA (0 and 12°). Surface pressure measurements as a supplementary data were also carried out. Data were taken at reduced frequencies of 0.03 and 0.073 and different distances downstream from trailing edge.

Findings

The results showed the hysteresis between the plunging wake in the upstroke and down-stroke motion. When the airfoil oscillated beyond the static stall angle of attack, huge variations on the wake profiles were found because of the interaction between LEV and Von Kármán vortices. More velocity defect in the wake region was realized by adding the TES but this effect was not the same for different phases of oscillation cycle. Also the power spectra of dominant frequencies and the extension of wake vortices were significantly increased by fitting the TES on the plunging airfoil.

Practical implications

The knowledge of the present study is necessary to enhance the performance of wind turbines, rotorcraft blades and maneuvering aircraft.

Originality/value

To date, no investigation has been conducted to determine the effects of a TES on the plunging airfoil aerodynamics.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 26 June 2019

Zekun Wang, Khuram Walayat and Moubin Liu

The purpose of this paper is to develop a corrected unresolved CFD-DEM method that can reproduce the wake effects in modeling particulate flows at moderate Reynolds number.

Abstract

Purpose

The purpose of this paper is to develop a corrected unresolved CFD-DEM method that can reproduce the wake effects in modeling particulate flows at moderate Reynolds number.

Design/methodology/approach

First, the velocity field in the wake behind a settling particle is numerically investigated by a resolved method, in which the finite volume method (FVM) is applied to model the fluid flow, discrete element method (DEM) is applied to simulate the motion of particles and immersed boundary method (IBM) is used to tackle fluid solid interaction. Second, an analytical scaling law is given, which can effectively describe the velocity field in the wake behind the settling particle at low and middle Reynolds numbers. Third, this analytical expression is incorporated into unresolved modeling to correct the relative velocity between the particle and its surrounding fluid and enable the influence of the wake of the particle on its neighboring particles.

Findings

Two numerical examples, the sedimentation of dual particles, a list of particles and even more particles are provided to show the effectiveness of the presented velocity corrected unresolved method (VCUM). It is found that, in both examples simulated with VCUM, the relative positions of the particles changed, and drafting & kissing phenomenon and particle clustering phenomenon were clearly observed.

Practical implications

The developed VCUM can be highly beneficial for modeling industrial particulate flows with DKT and particle clustering phenomena.

Originality/value

VCUM innovatively incorporates the wake effects into unresolved CFD-DEM method. It improves the computational accuracy of conventional unresolved methods with comparable results from resolved modeling, while the computational cost is greatly reduced.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 October 2022

Siwen Wang and Qiyou Cheng

Computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling analysis is an important method in the research of helicopter aeroelasticity due to its high…

Abstract

Purpose

Computational fluid dynamics (CFD)/computational structural dynamics (CSD) coupling analysis is an important method in the research of helicopter aeroelasticity due to its high precision. However, this method still suffers from some problems, such as wake dissipation and large computational cost. In this study, a new coupling method and a new air load correction method that combine the free wake model with the CFD/CSD method are proposed to maintain computational efficiency whilst solving the wake dissipation problem of the prior coupling methods.

Design/methodology/approach

A new coupling method and a new air load correction method that combine the free wake model with the CFD/CSD method are proposed. With the introduction of the free wake model, the CFD solver can adopt two-order accuracy schemes and fewer aerodynamic grids, thus maintaining computational efficiency whilst solving the wake dissipation problem of the prior coupling methods.

Findings

Compared with the predictions of the prior methods and flight test data, those of the proposed method are more accurate and closer to the test data. The difference between the two methods in high-speed forward flight is minimal.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalisability. Therefore, researchers are encouraged to test the proposed method further.

Originality/value

In this paper, a CFD/CSD/free wake coupling method is proposed to improve the computational accuracy of the traditional CFD/CSD coupled method and ensure the computational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 October 2018

Jesús Manuel Fernandez Oro, Andrés Meana-Fernández, Monica Galdo Vega, Bruno Pereiras and José González Pérez

The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage.

Abstract

Purpose

The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage.

Design/methodology/approach

A wall-modeled large eddy simulation (WMLES) has been performed for a spanwise 3D extrusion of the central section of the fan stage. Computations were performed for three different operating conditions, from nominal (Q_N) to off-design (85 per cent Q_N and 70 per cent Q_N) working points. Circumferential periodic conditions were introduced to reduce the extent of the computational domain. The post-processing procedure enabled the segregation of unsteady deterministic features and turbulent scales. The simulations were experimentally validated using wake profiles and turbulent scales obtained from hot-wire measurements.

Findings

The transport of rotor wakes and both wake–vane and wakewake interactions in the stator flow field have been analyzed. The description of flow separation, particularly at off-design conditions, is fully benefited from the LES performance. Rotor wakes impinging on the stator vanes generate a coherent large-scale vortex shedding at reduced frequencies. Large pressure fluctuations in the stagnation region on the leading edge of the vanes have been found.

Research limitations/implications

LES simulations have shown to be appropriate for the assessment of the design of an axial fan, especially for specific operating conditions for which a URANS model presents a lower performance for turbulence description.

Originality/value

This paper describes the development of an LES-based simulation to understand the flow mechanisms related to the rotor–stator interaction in axial fan stages.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2011

J.M. Fernández Oro, K.M. Argüelles Diaz, C. Santolaria Morros and M. Galdo Vega

The purpose of this paper is to focus on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single‐stage turbomachine.

Abstract

Purpose

The purpose of this paper is to focus on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single‐stage turbomachine.

Design/methodology/approach

A numerical three‐dimensional (3D) simulation of the complete stage is carried out, using a commercial code, FLUENT, that resolves the 3D, unsteady turbulent flow inside the passages of a low‐speed axial flow fan. For the closure of turbulence, both Reynolds‐averaged Navier‐Stokes modeling and large eddy simulation (LES) techniques are used and compared. LES schemes are shown to be more accurate due to their good description of the largest eddy structures of the flow, but require careful near‐wall treatment.

Findings

The main goal is placed on the characterization of the unsteady flow structures involved in an axial flow blower of high reaction degree, relating them to working point variations and axial gap modifications.

Research limitations/implications

Complementarily, an experimental facility was developed to obtain a physical description of the flow inside the machine. Both static and dynamic measurements were used in order to describe the interaction phenomena. A five‐hole probe was employed for the static characterization, and hot wire anemometry techniques were used for the instantaneous response of the interaction.

Originality/value

The paper describes development of a methodology to understand the flow mechanisms related to the blade‐passing frequency in a single rotor‐stator interaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2017

Anton Stephan, Frank Holzäpfel and Stefan Zholtovski

This study aims to investigate the effect of gusts on aircraft wake vortices. Aircraft wake vortices present a potential risk to following aircraft, particularly during final…

Abstract

Purpose

This study aims to investigate the effect of gusts on aircraft wake vortices. Aircraft wake vortices present a potential risk to following aircraft, particularly during final approach and landing, as wake vortices may remain in the flight corridor for a long time. Wind and turbulence are key factors that influence the wake vortex evolution and the wake vortex generation in the aircraft. Flying through a gust influences the wake vortex roll-up process and its evolution. Note that vertical and lateral gusts may affect counter-rotating wake vortices differently. Both vortices influence each other by inducing a downward velocity. Disturbances may therefore lead to local vortex tilting and later to a complex three-dimensional deformation. This work uses two different hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation (RANS-LES) approaches to investigate the effect of gusts on wake vortex evolution. In a one-way coupling, a pre-calculated RANS velocity field of the aircraft’s near-field is being swept through an LES domain. The effect of a sine gust on the turbulent wake is modeled by manipulating the RANS-field accordingly. As a more sophisticated approach, the concept of a two-way coupling is being presented. Here an LES solver is bi-directionally coupled with an unsteady RANS (URANS) solver, exchanging values at every physical time step of the simulation.

Design/methodology/approach

A one-way coupling approach of the LES code MGLET and the RANS code TAU is presented to simulate the gust effect on aircraft wake vortices. Additionally, the concept of the two-way coupling of these two codes incorporating a coupling module.

Findings

The gust effect of wake vortices subjected to a crosswind can be simulated. The vortex physics is analyzed. Unexpected behavior like fast upwind vortex decay is revealed.

Practical implications

The understanding of the aircraft wake vortex physics during landing provides valuable information for wake vortex advisory systems.

Originality/value

The effect of gust on wake vortices during and after landing has not been studied so far. The hybrid one-way coupling approach, as well as the concept of the two-way coupling, are relatively new.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2016

Frank Holzäpfel, Anton Stephan, Tobias Heel and Stephan Körner

From pilot reports, field measurements and numerical simulations, it is known that wake vortices may persist within the glide path in ground proximity, leading to an increased…

Abstract

Purpose

From pilot reports, field measurements and numerical simulations, it is known that wake vortices may persist within the glide path in ground proximity, leading to an increased encounter risk. This paper aims to investigate wake vortex behaviour during final approach and landing to understand why landings can be safe nevertheless. Further, it is investigated whether and to which extent the installation of plate lines beyond the runway tails may further accelerate wake vortex decay and thus improve safety by reducing the number of wake vortex encounters.

Design/methodology/approach

A hybrid numerical simulation approach is used to investigate vortex evolution from roll-up until final decay during the landing manoeuvre. The simulations are complemented by field measurement data accomplished at Munich Airport and at Special Airport Oberpfaffenhofen.

Findings

During touchdown, the so-called end effects trigger pressure disturbances and helical vortex structures that appear to ensure vortex decay rates in ground proximity needed to guarantee the required safety targets of aviation. Light detection and ranging (LIDAR) measurements indicate that vortex decay indeed can be accelerated by a plate line installed on the ground surface. The lifetime of the most safety relevant, long-lived and strongest vortices can be reduced by one-third.

Practical implications

The installation of plate lines beyond the runway tails may improve safety by reducing the number of wake vortex encounters and increase the efficiency of wake vortex advisory systems.

Originality/value

The novel numerical simulation technique and the acquired insights into the wake vortex phenomena occurring during landing as well as the demonstration of the functionality of the patented plate line provide high originality and value for both science and operational application.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 September 2015

Ji Xin, Renliang Chen and Pan Li

The purpose of this paper is to provide an approach to predict rotor thrust and hub moments under in ground effect (IGE) in transient flight. Target of the research is developing…

Abstract

Purpose

The purpose of this paper is to provide an approach to predict rotor thrust and hub moments under in ground effect (IGE) in transient flight. Target of the research is developing a new integrated methodology that can be applied in the simulation of rotor flow field IGE.

Design/methodology/approach

Free-wake model and panel method are two methods used to predict ground influence on rotor flow field. However, these methods can result in unphysical phenomena, such as wake vortex moving below the ground during simulation and fluctuation taking place on vortices near ground, which is named noise problem. Thus, a new tactic called “constant volume rectification” is developed to rectify the unreal vortex location, and a third-order time-stepping algorithm called CB3D (Center difference and Backward difference 3rd-order scheme with numerical Dissipation) with strengthened stability is proposed to replace the existing second-order time-stepping algorithm CB2D (Center difference and Backward difference 2nd-order scheme with numerical Dissipation) to inhibit the development of discrete error.

Findings

The new free-wake model is effective and stable in predicting the characteristics of the rotor flow field in steady and transient flights under IGE. The newly developed CB3D scheme is more stable and more suitable for wake prediction of rotor under IGE than the CB2D scheme. At different advance ratios, the predicted flow regimes of recirculation and ground vortex agree well with the test images. In the accelerating condition, the predicted variations of rotor thrust and hub moments with advance ratios are consistent with the corresponding experimental results. It is found that the slow movement of wake geometry with advance ratio in the accelerating condition is the cause of the delay in the variation tendency of rotor forces compared to that in steady condition.

Practical implications

The proposed model can be used in rotor designing and helicopter flight dynamics simulation because of its favorable stability and relatively low computational cost.

Originality/value

This paper proposes several new methods to make the time-stepping wake model highly appropriate for rotor aerodynamics prediction under IGE. These methods provide new perspectives in solving the unstable and unphysical problems that often arise in vortex–ground interaction in rotor free-wake prediction.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 20000