Search results

1 – 7 of 7
Article
Publication date: 1 March 2007

M. Grujicic, B. Pandurangan, U. Zecevic, K.L. Koudela and B.A. Cheeseman

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a non…

Abstract

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a non‐Armor‐ Piercing (non‐AP) and AP projectiles is investigated using a transient non‐linear dynamics computational analysis. The results obtained confirm experimental findings that the all‐composite armor, while being able to successfully defeat non‐AP threats, provides very little protection against AP projectiles. In the case of the hybrid armor, it is found that, at a fixed overall areal density of the armor, there is an optimal ratio of the ceramic‐to‐composite areal densities which is associated with a maximum ballistic armor performance against AP threats. The results obtained are rationalized using an analysis based on the shock/blast wave reflection and transmission behavior at the hard‐face/air, hard‐face/backing and backing/air interfaces, projectiles’ wear and erosion and the intrinsic properties of the constituent materials of the armor and the projectiles.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5146

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 May 2020

Mayyadah S. Abed, Payman S. Ahmed, Jawad K. Oleiwi and Basim M. Fadhil

Composite laminates are considered one of the most popular damage-resistant materials when exposed to impact force in civil and military applications. In this study, a comparison…

384

Abstract

Purpose

Composite laminates are considered one of the most popular damage-resistant materials when exposed to impact force in civil and military applications. In this study, a comparison of composites 12 and 20 layers of fabrics Kevlar and ultrahigh-molecular-weight poly ethylene (UHMWPE)-reinforced epoxy under low-velocity impacts represented by drop-weight impact and Izod pendulum impact has been done. During the Izod test, Kevlar-based composite showed damage at the composite center and fiber breakages. Whereas delamination was observed for UHMWPE reinforced epoxy (PE). The maximum impact strength was for Kevlar-reinforced epoxy (KE) and increases with the number of laminates. Drop-weight impact test showed the highest absorbed energy for (KE) composites. The results revealed that different behavior during the impact test for composites belongs to the impact mechanism in each test.

Design/methodology/approach

Aramid 1414 Kevlar 49 and UHMWPE woven fabrics were purchased from Yixing Huaheng High-Performance Fiber Textile Co. Ltd, with specifications listed in Table 1. Epoxy resin (Sikafloor-156) is supplied from Sika AG. Sikafloor-156 is a two-part, low-viscosity, solvent-free epoxy resin, with compressive strength ∼95 N/mm², flexural strength ∼30 N/mm² and shore D hardness 83 (seven days). The mixture ratio of A/B was one-third volume ratio. Two types of laminated composites with different layers 12 and 20 were prepared by hand layup: Kevlar–epoxy and UHMWPE–epoxy composites as shown in Figure 1. Mechanical pressure was applied to remove bubbles and excess resin for 24 h. The composites were left in room temperature for seven days, and then composite plates were cut for the desired dimensions. Low-velocity impact testing, drop-weight impact, drop tower impact system INSTRON CEAST 9350 (see Figure 2) was facilitated to investigate impact resistance of composites according to ASTM D7137M (Test Method for Compressive, 2005). Low-velocity impact tests have been performed at room temperature for composite with dimensions 10 × 15 cm2 utilizing a drop tower (steel indenter diameter 19.85 mm as shown in Figure 3), height (800 mm), drop mass (5 kg) and speed (3.96 m/s). Special impact equipment consisting of vertically falling impactor was used in the test. The energy is obtained from Drop tower impact systems, (2009) E = ½ mv2 (2.1). The relationship between force–time, deformation–time and energy–time and deformation was obtained. Energy–deformation and force–deformation relationships were also obtained. The depth of penetration and the radius of impactor traces were recorded. Izod pendulum impact test of plastics was applied according to ASTM D256 (Test Method for Compressive, 2005). Absorbed energy was recorded to compute the impact strength of the specimen. The specimen before the test is shown in Figure 4.

Findings

In order to investigate two types of impact: drop-weight impact and Izod impact on damage resistance of composites, the two tests were done. Drop-weight impact is dropping a known weight and height in a vertical direction with free fall, absorbed energy can be calculated. Izod impact measures the energy required to break a specimen by striking a specific size bar with a pendulum (Test Method for Compressive, 2005; Test Methods for Determining, 2018). The results obtained with the impact test are presented. Figure 5 shows the histogram bars of impact strength of composites. It can be noticed that Kevlar–epoxy (KE) composites give higher energy strength than UHMWPE–epoxy (PE) in 12 and 20 plies. The increasing percentage is about 18.5 and 5.7%. It can be observed in Figure 6 that samples are not destructed completely due to fiber continuity. Also, the delamination occurs obviously for UHMWPE–epoxy more than for Kevlar-based composite, which may due to weak binding between UHMWPE with an epoxy relative with Kevlar.

Practical implications

The force–time curves for Kevlar–epoxy (KE) and UHMWPE–epoxy (PE) composites with 12 and 20 plies are illustrated respectively in Figure 7. The contact duration between indenter and composite surface is repented by the force–time curves, so the maximum force reaches with certain displacement. It can be seen that maximum force was (13,209, 18,734.9, 23,271.07 and 19,825.38 N) at the time (3.97, 4.43, 3.791 and 4.198 ms) for 12 KE, 12 PE, 20 KE and 20 PE, respectively. The sharp peaks of KE composite are due to the lower ductility of Kevlar compared with UHMWPE. These results agree with the results of Ahmed et al. (2016). Kevlar-based composites (KE) showed lower impact force and crack propagates in the matrix with fast fiber breakage compared with PE composites, whereas the latter did not suffer from fabric breakage in 12 and 20 plies any more (see Figure 8). Figure 9 illustrates force–deformation curves, for 12 and 20 plies of Kevlar–epoxy (KE) and UHMWPE–epoxy (PE) composites. Curve's slop is considered the specimen's stiffness and the maximum displacement. To investigate the impact behavior of the four different composites, the comparison was made among the relative force–deformation curves. The maximum displacement was 5.119, 3.443, 1.173 and 1.17 mm for 12KE, 12 PE, 20 KE and 20 PE, respectively. It seems that UHMWPE-based composite (PE) presents lower deformation than Kevlar-based composites (KE) at a same number of laminates, although the maximum displacement is for 12 PE and 12 KE (see Figure 8). Kevlar-based composites (KE) showed more damage than UHMWPE-based composite (PE), so the maximum displacement is always higher for KE specimens with maximum indenter trace diameter (D∼11.27 mm). The onset of cracks begins along fibers on the impacted side for 20 KE and 20 PE specimens with lower indenter trace (D∼5.42 and 5.96 mm), respectively (see Table 2). These results refer to the lower stiffness of KE composites (see the slope of the curve) relative to PE composites. This result agreed with (Vieille et al., 2013) when they found that the theoretical stiffness of laminated composite during drop-weight impact depends significantly on fiber nature (Fadhil, 2013). The matrix cracking is the first type of damage that may not change stiffness of composites overall. Material stiffness changes due to the stress concentration represented by matrix cracks, delamination and fiber breakage (Hancox, 2000). Briefly, the histogram (see Figure 10) showed that the best impact behavior was for 20 KE, highest impact force with lower deformation, indenter trace diameter and contact time. Absorbed energy–time and absorbed energy–deformation curves for composites are shown in Figures 11 and 12, respectively. The maximum absorbed energy was (36.313, 29.952, 9.783 and 6.928 J) for 12 KE, 12 PE, 20 KE and 20 PE, respectively. Test period time is only 8 ms, but the time in which composites reached maximum absorbed energy was (4.413, 3.636, 2.394 and 2.408 ms). The maximum absorbed energy was for 12 KE with lower rebound energy because part of kinetic energy transferred to potential energy kept in the composite as material damage (see Figures 3 and 4). This composite absorbs more energy as material damage which kept as potential energy. Whereas other composites 12 PE, 20 PE and 20 KE showed less damage, lower absorbed energy and higher rebound energy, which appeared in different peak behavior as the negative value of energy. Also from the absorbed energy–time curves, it had been noticed significantly the maximum contact time of indenter with composite was 4.413 ms for 12 KE, which exhibits higher deformation (5.119 mm), whereas other composites 12 PE, 20 KE and 20 PE showed less damage, contact time and deformation as (3.443, 1.173, 1.17 mm), respectively.

Originality/value

The main goal of the current study is to evaluate the performances of armor composite made off of Kevlar and UHMWPE fabrics reinforced epoxy thermosetting resin under the low-velocity impact. Several plates of composites were prepared by hand layup. Izod and drop-weight impact tests were facilitated to get an indication about the absorbed energy and strength of the armors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 August 2015

Mica Grujicic, Jennifer Snipes, Ramin Yavari, S. Ramaswami and Rohan Galgalikar

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC…

Abstract

Purpose

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question.

Design/methodology/approach

Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials.

Findings

The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed.

Originality/value

To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 July 2024

Kawaljit Singh Randhawa

This study aims to explore the synthesis, characteristics and utilization of polymer composites integrated with cutting-edge pigments.

Abstract

Purpose

This study aims to explore the synthesis, characteristics and utilization of polymer composites integrated with cutting-edge pigments.

Design/methodology/approach

The incorporation of advanced pigments introduces functionalities such as enhanced mechanical strength, thermal stability, ultraviolet resistance and color stability, thus extending the range of applications in diverse fields including automotive, aerospace, electronics and construction.

Findings

This review discusses the mechanisms underlying the property enhancements achieved through the incorporation of advanced pigments and highlights recent developments in the field.

Originality/value

Polymer composites incorporating advanced pigments have garnered significant attention in recent years because of their potential to enhance various material properties and broaden their applications. This paper explores the fabrication methods of polymer composites reinforced with organic/inorganic advanced pigments in brief along with their characteristics and applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 June 2015

Mica Grujicic, Rohan Galgalikar, S. Ramaswami, Jennifer Snipes, Ramin Yavari and Rajendra K. Bordia

A multi-physics process model is developed to analyze reactive melt infiltration (RMI) fabrication of ceramic-matrix composite (CMC) materials and components. The paper aims to…

Abstract

Purpose

A multi-physics process model is developed to analyze reactive melt infiltration (RMI) fabrication of ceramic-matrix composite (CMC) materials and components. The paper aims to discuss this issue.

Design/methodology/approach

Within this model, the following key physical phenomena governing this process are accounted for: capillary and gravity-driven unsaturated flow of the molten silicon into the SiC/SiC CMC preform; chemical reactions between the silicon melt and carbon (either the one produced by the polymer-binder pyrolysis or the one residing within the dried matrix slurry); thermal-energy transfer and source/sink phenomena accompanying reactive-flow infiltration; volumetric changes accompanying chemical reactions of the molten silicon with the SiC preform and cooling of the as-fabricated CMC component to room temperature; development of residual stresses within, and thermal distortions of, the as-fabricated CMC component; and grain-microstructure development within the SiC matrix during RMI.

Findings

The model is validated, at the material level, by comparing its predictions with the experimental and modeling results available in the open literature. The model is subsequently applied to simulate RMI fabrication of a prototypical gas-turbine engine hot-section component, i.e. a shroud. The latter portion of the work revealed the utility of the present computational approach to model fabrication of complex-geometry CMC components via the RMI process.

Originality/value

To the authors’ knowledge, the present work constitutes the first reported attempt to apply a multi-physics RMI process model to a gas-turbine CMC component.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 7 of 7