Search results

1 – 10 of 35
Content available
Article
Publication date: 14 April 2022

Ahmad Chihadeh and Michael Kaliske

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to…

Abstract

Purpose

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to consider the bond behavior between the reinforcement and the continuum.

Design/methodology/approach

The embedded approach is used for coupling reinforcement bars with continuum elements. This description is achieved by coupling continuum elements in the background mesh to the reinforcement bars, which are described using truss- finite elements. The coupling is implemented between the truss elements and the continuum elements in the background mesh through bond elements that allow for freely distributed truss elements independent of the continuum element discretization. The bond elements allow for modeling the bond behavior between the reinforcement and the continuum.

Findings

The paper introduces a novel method to include the reinforcement bars in the MPM applications. The reinforcement bars can be modeled without any constraints with a bond-slip constitutive model being considered.

Originality/value

As modeling of reinforced materials is required in a wide range of applications, a method to include the reinforcement into the MPM framework is required. The proposed approach allows for modeling reinforced material within MPM applications.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 March 2002

John Rigelsford

77

Abstract

Details

Sensor Review, vol. 22 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 21 June 2023

Xiaoyu Chen, Yonggang Leng, Fei Sun, Xukun Su, Shuailing Sun and Junjie Xu

The existing Nonlinear Dynamic Vibration Absorbers (NLDVAs) have the disadvantages of complex structure, high cost, high installation space requirements and difficulty in…

Abstract

Purpose

The existing Nonlinear Dynamic Vibration Absorbers (NLDVAs) have the disadvantages of complex structure, high cost, high installation space requirements and difficulty in miniaturization. And most of the NLDVAs have not been applied to reality. To address the above issues, a novel Triple-magnet Magnetic Dynamic Vibration Absorber (TMDVA) with tunable stiffness, only composed of triple cylindrical permanent magnets and an acrylic tube, is designed, modeled and tested in this paper.

Design/methodology/approach

(1) A novel TMDVA is designed. (2) Theoretical and experimental methods. (3) Equivalent dynamics model.

Findings

It is found that adjusting the magnet distance can effectively optimize the vibration reduction effect of the TMDVA under different resonance conditions. When the resonance frequency of the cantilever changes, the magnet distance of the TMDVA with a high vibration reduction effect shows an approximately linear relationship with the resonance frequency of the cantilever which is convenient for the design optimization of the TMDVA.

Originality/value

Both the simulation and experimental results prove that the TMDVA can effectively reduce the vibration of the cantilever even if the resonance frequency of the cantilever changes, which shows the strong robustness of the TMDVA. Given all that, the TMDVA has potential application value in the passive vibration reduction of engineering structures.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 March 2003

Jon Rigelsford

60

Abstract

Details

Sensor Review, vol. 23 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 26 July 2021

David Marschall, Sigfrid-Laurin Sindinger, Herbert Rippl, Maria Bartosova and Martin Schagerl

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of…

Abstract

Purpose

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of this study was to develop a design methodology for such additively manufactured prototypes, considering efficient generation and structural simulation of boundary conformal non-periodic lattices, optimization of production parameters as well as experimental validation.

Design/methodology/approach

Multi-curved, sandwich structure-based demonstrators were designed, simulated and experimentally tested with boundary conformal lattice cells. The demonstrator’s non-periodic lattice cells were simplified by forward homogenization processes. To represent the stiffness of the top and bottom face sheet, constant isotropic and mapped transversely isotropic simulation approaches were compared. The dimensional accuracy of lattice cells and demonstrators were measured with a gauge caliper and a three-dimensional scanning system. The optimized process parameters for lattice structures were transferred onto a large volume laser sintering system. The stiffness of each finite element analysis was verified by an experimental test setup including a digital image correlation system.

Findings

The stiffness prediction of the mapped was superior to the constant approach and underestimated the test results with −6.5%. Using a full scale fairing the applicability of the development process was successfully demonstrated.

Originality/value

The design approach elaborated in this research covers aspects from efficient geometry generation over structural simulation to experimental testing of produced parts. This methodology is not only relevant in the context of motor sports but is transferrable for all additively manufactured large scale components featuring a complex lattice sub-structure and is, therefore, relevant across industries.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2341

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Article
Publication date: 7 September 2012

245

Abstract

Details

Sensor Review, vol. 32 no. 4
Type: Research Article
ISSN: 0260-2288

Open Access
Article
Publication date: 8 January 2020

Guillermo A. Riveros, Felipe J. Acosta, Reena R. Patel and Wayne Hodo

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The…

1055

Abstract

Purpose

The rostrum of a paddlefish provides hydrodynamic stability during feeding process in addition to detect the food using receptors that are randomly distributed in the rostrum. The exterior tissue of the rostrum covers the cartilage that surrounds the bones forming interlocking star shaped bones.

Design/methodology/approach

The aim of this work is to assess the mechanical behavior of four finite element models varying the type of formulation as follows: linear-reduced integration, linear-full integration, quadratic-reduced integration and quadratic-full integration. The paper also presents the load transfer mechanisms of the bone structure of the rostrum. The base material used in the study was steel with elastic–plastic behavior as a homogeneous material before applying materials properties that represents the behavior of bones, cartilages and tissues.

Findings

Conclusions are based on comparison among the four models. There is no significant difference between integration orders for similar type of elements. Quadratic-reduced integration formulation resulted in lower structural stiffness compared with linear formulation as seen by higher displacements and stresses than using linearly formulated elements. It is concluded that second-order elements with reduced integration are the alternative to analyze biological structures as they can better adapt to the complex natural contours and can model accurately stress concentrations and distributions without over stiffening their general response.

Originality/value

The use of advanced computational mechanics techniques to analyze the complex geometry and components of the paddlefish rostrum provides a viable avenue to gain fundamental understanding of the proper finite element formulation needed to successfully obtain the system behavior and hot spot locations.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3083

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Access

Only content I have access to

Year

Content type

1 – 10 of 35