Search results

1 – 10 of over 6000
Article
Publication date: 5 August 2022

N. Keerthi Reddy and M. Sankar

This study aims to numerically study the buoyant convective flow of two different nanofluids in a porous annular domain. A uniformly heated inner cylinder, cooled outer…

Abstract

Purpose

This study aims to numerically study the buoyant convective flow of two different nanofluids in a porous annular domain. A uniformly heated inner cylinder, cooled outer cylindrical boundary and adiabatic horizontal surfaces are considered because of many industrial applications of this geometry. The analysis also addresses the comparative study of different porous media models governing fluid flow and heat transport.

Design/methodology/approach

The finite difference method has been used in the current simulation work to obtain the numerical solution of coupled partial differential equations. In particular, the alternating direction implicit method is used for solving transient equations, and the successive line over relaxation iterative method is used to solve time-independent equation by choosing an optimum value for relaxation parameter. Simpson’s rule is adopted to estimate average Nusselt number involving numerical integration. Various grid sensitivity checks have been performed to assess the sufficiency of grid size to obtain accurate results. In this analysis, a general porous media model has been considered, and a comparative study between three different models has been investigated.

Findings

Numerical simulations are performed for different combinations of the control parameters and interesting results are obtained. It has been found that the an increase in Darcy and Rayleigh numbers enhances the thermal transport rate and strengthens the nanofluid movement in porous annulus. Also, higher flow circulation rate and thermal transport has been detected for Darcy model as compared to non-Darcy models. Thermal mixing could be enhanced by considering a non-Darcy model.

Research limitations/implications

The present results could be effectively used in many practical applications under the limiting conditions of two-dimensionality and axi-symmetry conditions. The only drawback of the current study is it does not include the three-dimensional effects.

Practical implications

The results could be used as a first-hand information for the design of any thermal systems. This will help the design engineer to have fewer trial-and-run cases for the new design.

Originality/value

A pioneering numerical investigation on the buoyant convective flow of two different nanofluids in an annular porous domain has been carried out by using a general Darcy–Brinkman–Forchheimer model to govern fluid flow in porous matrix. The results obtained from current investigation are novel and original, with numerous practical applications of nanofluid saturated porous annular enclosure in the modern industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

Ioan Pop, Mikhail Sheremet and Dalia Sabina Cimpean

The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s nanofluid…

Abstract

Purpose

The main purpose of this numerical study is to provide a solution for natural convection in a partially heated, wavy cavity filled with a nanofluid using Buongiorno’s nanofluid model.

Design/methodology/approach

The domain of interest is a two-dimensional cavity bounded by an isothermal left wavy wall, adiabatic horizontal flat walls and right flat wall with a partial isothermal zone. To study the behaviour of the nanofluid, a two-phase Buongiorno mathematical model with the effects of the Brownian motion and thermophoresis is used. The governing dimensionless partial differential equations with corresponding boundary conditions were numerically solved by the finite difference method of the second-order accuracy using the algebraic transformation of the physical wavy cavity in a computational rectangular domain. The study has been conducted using the following values of the governing parameters: Ra = 104-106, Le = 10, Pr = 6.26, Nr = 0.1, Nb = 0.1, Nt = 0.1, A = 1, κ = 1-3, b = 0.2, hhs/L = 0.25, h1/L = 0.0-0.75 and τ = 0-0.25.

Findings

It is found that an increase in the undulation number leads to a weak intensification of convective flow and a reduction of Nū because of more essential cooling of the wavy troughs where the temperature gradient decreases. Variations of the heater location show a modification of the fluid flow and heat transfer. The upper position of the heater reflects the minimum heat transfer rate, while the position between the bottom part and the middle section (h1/L = 0.25) characterizes an enhancement of heat transfer.

Originality/value

The originality of this work is to analyse the natural convection in a partially heated wavy cavity filled by a nanofluid using Buongiorno’s nanofluid model. The results will benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2024

Burak Kiyak, Hakan Fehmi Oztop and Ishak Gökhan Aksoy

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container…

Abstract

Purpose

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container. Different container materials are also tested such as plexiglass and aluminium. This study aims to assess the energy storage capacity, melting behaviour and temperature distributions of PCM with a specific melting range (22°C–26°C) for various governing parameters such as inclination angles, aspect ratios (AR) and temperature differences (ΔT) and compare the melting behaviour and energy storage performance of PCM in aluminium containers to those in plexiglass containers.

Design/methodology/approach

A finite volume approach was adopted to evaluate the thermal energy storage capability of PCMs. Five inclination angles ranging from 0° to 180° were considered and the energy storage capacity. Also, the melting behaviour of the PCM and temperature distributions of the container with different materials were tested. Two different AR and ΔT values were chosen as parameters to analyse for their effects on the melting performance of the PCM. Conjugate heat transfer problem is solved to see the effects of conduction mode of heat transfer.

Findings

The results of the study indicate that as AR decreases, the effect of the inclination angles on the energy storage capacity of the PCM decreases. For lower ΔT, the difference between the maximum and minimum stored energies was 20.88% for AR = 0.20, whereas it was 6.85% for AR = 0.15. Furthermore, under the same conditions, the PCM stored 8.02% more energy in plexiglass containers than in aluminium containers.

Originality/value

This study contributes to the understanding of the influence of inclination angle, container material, AR and ΔT on the thermal energy storage capabilities of PCM in a novel designed container. The findings highlight the importance of AR in mitigating the effect of the inclination angle on energy storage capacity. Additionally, comparing aluminium and plexiglass containers provides insights into the effect of container material on the melting behaviour and energy storage properties of PCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 January 2019

Shashikumar N.S., B.J. Gireesha, B. Mahanthesh, Prasannakumara B.C. and Ali J. Chamkha

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants…

Abstract

Purpose

Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants in microelectromechanical systems (MEMSs). This paper aims to investigate the effects of different alloy nanoparticles such as AA7075 and Ti6Al4V on microchannel flow of magneto-nanoliquids with partial slip and convective boundary conditions. Flow features are explored with the effects of magnetism and nanoparticle shape. Heat transport of fluid includes radiative heat, internal heat source/sink, viscous and Joule heating phenomena.

Design/methodology/approach

Suitable dimensionless variables are used to reduce dimensional governing equations into dimensionless ordinary differential equations. The relevant dimensionless ordinary differential systems are computed numerically by using Runge–Kutta–Fehlberg-based shooting approach. Pertinent results of velocity, temperature, entropy number and Bejan number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Analytical results agree perfectly with numerical results.

Findings

It is established that the entropy production can be improved with radiative heat, Joule heating, convective heating and viscous dissipation aspects. The entropy production is higher in the case of Ti6Al4V-H2O nanofluid than AA7075-H2O. Further, the inequality Ns(ξ)Sphere > Ns(ξ)Hexahedran > Ns(ξ)Tetrahydran > Ns(ξ)Column > Ns(ξ)Lamina holds true.

Originality/value

Effects of aluminium and titanium alloy nanoparticles in microchannel flows by using viscous dissipation and Joule heating are investigated for the first time. Flow features are explored with the effects of magnetism and nanoparticle shape. The results for different alloy nanoparticles such as AA7075 and Ti6Al4V have been compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

V. Rajesh and Ali J. Chamkha

The purpose of this paper is to consider unsteady free convection flow of a dissipative fluid past an exponentially accelerated infinite vertical porous plate in the presence of…

Abstract

Purpose

The purpose of this paper is to consider unsteady free convection flow of a dissipative fluid past an exponentially accelerated infinite vertical porous plate in the presence of Newtonian heating and mass diffusion.

Design/methodology/approach

The problem is governed by coupled non-linear partial differential equations with appropriate boundary conditions. A Galerkin finite element numerical solution is developed to solve the resulting well-posed two-point boundary value problem. It is a powerful, stable technique which provides excellent convergence and versatility in accommodating coupled systems of ordinary and partial differential equations.

Findings

It is found that the skin friction coefficient increases with increases in either of the Eckert number, thermal Grashof number, mass Grashof number or time whereas it decreases with increases in either of the suction parameter, Schmidt number or the acceleration parameter for both air and water. The skin friction coefficient is also found to decrease with increases in the values of the Prandtl number. In addition, it is found that the rate of heat transfer increases with an increase in the suction parameter and decreases with an increase in the Eckert number for both air and water. Lastly, it is found that the rate of heat transfer increases with increasing values of the Prandtl number and decreases with increasing time for all values of the Prandtl number.

Research limitations/implications

The present study has considered only Newtonian fluids. Future studies will address non-Newtonian liquids.

Practical implications

A very useful source of information for researchers on the subject of free convective flow over the surface when the rate of heat transfer from the surface is proportional to the local surface temperature.

Originality/value

This paper is relatively original and illustrates the effects of viscous dissipation on free convective flow past an exponentially accelerated infinite vertical porous plate with Newtonian heating and mass diffusion.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 July 2022

Pekmen Geridonmez and Hakan Oztop

The purpose of this study is to investigate partial magnetic source (MS) effect on natural convection (NC) flow of a ferrofluid flow in a cavity with sinusoidally heated vertical…

Abstract

Purpose

The purpose of this study is to investigate partial magnetic source (MS) effect on natural convection (NC) flow of a ferrofluid flow in a cavity with sinusoidally heated vertical walls. The combination of ferrohydrodynamics and magnetohydrodynamics due to the variable magnetic field (MF) and magnetite nanoparticles in one part of the cavity, and the classical NC in the other part of the cavity are concerned.

Design/methodology/approach

The dimensionless equations in stream function-vorticity form are numerically solved by radial basis functions (RBF) based collocation method.

Findings

A remarkable change in fluid flow and heat transfer is noted if the MS location is close to the left sinusoidally heated wall. In particular, the average Nusselt number is the smallest for the middle centered partial MF through the left wall at a large Hartmann number.

Research limitations/implications

RBF collocation approach is limited to small geometries due to the obtained solution globally in the entire domain of the problem.

Practical implications

If the partial restriction of the effect of MF is done in real life, it would be a control parameter at some required/requested areas of the concerned problem.

Social implications

This is a physical problem.

Originality/value

If the proposed idea of partial variable MF is able to be applied to a system in real life, it would be a good controller on fluid flow and heat transfer. RBF-based methods are also alternative numerical procedures to solve heat transfer and fluid flow problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

N. Nithyadevi, P. Gayathri and A. Chamkha

The paper aims to examine the boundary layers of a three-dimensional stagnation point flow of Al-Cu nanoparticle-suspended water-based nanofluid in an electrically conducting…

Abstract

Purpose

The paper aims to examine the boundary layers of a three-dimensional stagnation point flow of Al-Cu nanoparticle-suspended water-based nanofluid in an electrically conducting medium. The effect of magnetic field on second-order slip effect and convective heating is also taken into account.

Design/methodology/approach

The thermophysical properties of alloy nanoparticles such as density, specific heat capacity and thermal conductivity are computed using appropriate formula. The non-linear parabolic partial differential equations are transformed to ordinary differential equations and solved by shooting technique.

Findings

The influence of compositional variation of alloy nanoparticle, nanoparticle concentration, magnetic effect, slip parameters and Biot number are presented for various flow characteristics. Interesting results on skin friction and Nusselt number are obtained for different composition of aluminium and copper.

Originality/value

A novel result of the analysis reveals that impact of magnetic field near the boundary is suppressed by the slip effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2005

H.M. Duwairi

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Abstract

Purpose

To highlight the effect of viscous and Joule heating on different ionized gases in the presence of magneto and thermal radiation effects.

Design/methodology/approach

The conservation equations are written for the MHD forced convection in the presence of thermal radiation. The governing equations are transformed into non‐similar form using a set of dimensionless variables and then solved numerically using Keller box method.

Findings

The increasing of fluid suction parameter enhances local Nusselt numbers, while the increasing of injection parameter decreases local Nusselt numbers. The inclusion of thermal radiation increases the heat transfer rate for both ionized gases suction or injection. The presence of magnetic field decreases the heat transfer rate for the suction case and increases it for the injection case. Finally, the heat transfer rate is decreased due to viscous dissipation.

Research limitations/implications

The combined effects of both viscous and Joule heating on the forced convection heat transfer of ionized gases for constant surface heat flux surfaces can be investigated.

Practical implications

A very useful source of coefficient of heat transfer values for engineers planning to transfer heat by using ionized gases.

Originality/value

The viscous and Joule heating of ionized gases on forced convection heat transfer in the presence of magneto and thermal radiation effects are investigated and can be used by different engineers working on industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2021

Dipak Kumar Mandal, Milan Kumar Mondal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to focus on a thermo-fluid flow in a partially driven cavity (PDC) using Cu-water nanoliquid, magnetic field and porous substance. The cooling and sliding motion…

Abstract

Purpose

This study aims to focus on a thermo-fluid flow in a partially driven cavity (PDC) using Cu-water nanoliquid, magnetic field and porous substance. The cooling and sliding motion are applied on the upper half of the vertical walls and the bottom wall is heated. Thermal characteristics are explored to understand magnetohydrodynamic convection in a nanoliquid filled porous system from a fundamental viewpoint. The governing parameters involved to cater to the moving speed of the sidewalls and partial translation direction are the relative strength of thermal buoyancy, porous substance permeability, magnetic field intensity, nanoparticle suspension and orientation of the cavity.

Design/methodology/approach

The coupled transport equations of the problem are solved using an in-house developed finite volume-based computing code. The staggered nonuniform grids along the x and y directions are used. The SIMPLE algorithm technique is considered for the iterative solution of the discretized equations with the convergence check of the continuity mass defect below 10–10.

Findings

The present study unveils that the heat transfer enhances at higher Ri with the increasing value of Re, irrespective of the presence of a porous substance or magnetic field or the concentration of nanofluid. Apart from different flow controlling parameters, the wall motions have a significant contribution to the formation of flow vortices and corresponding heat transfer. Orientation of the cavity significantly alters the transport process within the cavity. The upward wall velocity for both the sidewalls could be a better choice to enhance the high heat transfer (approximately 88.39% at Richardson and Reynolds numbers, respectively, 0.1 and 200).

Research limitations/implications

Considering other multi-physical scenarios like porous layers, conducting block, microorganisms and the present investigation could be further extended to analyze a problem of complex flow physics.

Practical implications

In this study, the concept of partially driven wall motion has been adopted under the Cu-water nanoliquid, magnetic field, porous substance and oblique enclosure. All the involved flow-controlling parameters have been experimented with under a wide parametric range and associated thermo-flow physics are analyzed in detail. This outcome of this study can be very significant for designing as well as controlling thermal devices.

Originality/value

The convective process in a partially driven cavity (PDC) with the porous medium has not been investigated in detail considering the multi-physical scenarios. Thus, the present effort is motivated to explore the thermal convection in such an oblique enclosure. The enclosure is heated at its bottom and has partially moving-wall cold walls. It consists of various multi-physical conditions like porous structure, magnetic field, Cu–H2O nanoliquid, etc. The system performance is addressed under different significant variables such as Richardson number, Reynolds number, Darcy number, Hartmann number, nanoliquid concentration and orientation of cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 August 2021

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

The aims of this study is to numerically investigate the thermal phenomena during magnetohydrodynamic (MHD) free convection in an oblique enclosure filled with porous media…

Abstract

Purpose

The aims of this study is to numerically investigate the thermal phenomena during magnetohydrodynamic (MHD) free convection in an oblique enclosure filled with porous media saturated with Cu–Al2O3/water hybrid nanofluid and heated at the left wavy wall. The thermophysical phenomena are explored thoroughly by varying the amplitude (λ) and undulation (n) of the wavy wall and the inclination of the enclosure (γ) along with other pertinent physical parameters. Darcy–Rayleigh number (Ram), Darcy number (Da), Hartmann number (Ha) and nanoparticle volumetric fraction (ϕ). The effect of all parameters has been analyzed and represented by using heatlines, isotherms, streamlines, average Nusselt number and local Nusselt number.

Design/methodology/approach

The finite volume method is used to work out the transport equations coupled with velocity, pressure and temperature subjected to non-uniform staggered grid structure after grid-sensitivity analysis by an indigenous computing code and the semi-implicit method for pressure linked equations (SIMPLE) algorithm. The solution process is initiated following an iterative approach through the alternate direction implicit sweep technique and the tridiagonal matrix algorithm (TDMA) algorithm. The iterative process is continued until successive minimization of the residuals (<1e-8) for the governing equations.

Findings

This study reveals that the increase in the heating surface area does not always favor heat transfer. An increase in the undulation amplitude enhances the heat transfer; however, there is an optimum value of undulation of the wavy wall for this. The heat transfer enhancement because of the wall curvature is revealed at higher Ram, lower Da and Ha and lower volume fraction of nanoparticles. In general, this augmentation is optimum for four undulations of the wavy wall with an amplitude of λ = 0.3. The heat transfer enhancement can be more at the cavity inclination   γ = 45°.

Research limitations/implications

The technique of this investigation could be used in other multiphysical areas involving partial porous layers, conducting objects, different heating conditions, wall motion, etc.

Practical implications

This study is to address MHD thermo-fluid phenomena of Cu–Al2O3/water-based hybrid nanofluid flow through a non-Darcian porous wavy cavity at different inclinations. The amplitude and number of undulations of the wavy wall, permeability of the porous medium, magnetic field intensity, nanoparticle volumetric fraction and inclinations of the enclosure play a significant role in the heat transfer process. This analysis and the findings of this work can be useful for the design and control of similar thermal systems/devices.

Originality/value

Many researchers have examined the problem of buoyancy-induced free convection in a wavy-porous cavity packed with regular fluids or nanofluids. However, the effect of magnetic fields along with the amplitude (λ) at different undulations (n) of the heated wavy wall of an inclined enclosure is not attended so far to understand the transport mechanisms. Most often, the evolutions of the thermo-fluid phenomena in such complex geometries invoking different multiphysics are very intricate. Numerical implementations for simulations and subsequent post-processing of the results are also challenging.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 6000