Search results

1 – 10 of 751
Article
Publication date: 8 July 2024

A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…

Abstract

Purpose

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.

Design/methodology/approach

A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.

Findings

The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.

Originality/value

Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 September 2024

Zhipeng Liang, Chunju Zhao, Huawei Zhou, Yihong Zhou, Quan Liu, Tao Fang and Fang Wang

The spatial–temporal conflicts in the construction process of concrete arch dams are related to the construction quality and duration, especially for pouring blocks with a…

Abstract

Purpose

The spatial–temporal conflicts in the construction process of concrete arch dams are related to the construction quality and duration, especially for pouring blocks with a continuous high-strength and high-density construction process. Furthermore, the complicated construction technology and limited space resources aggravate the spatial–temporal conflicts in the process of space resource allocation and utilization, directly affecting the pouring quality and progress of concrete. To promote the high-strength, quality-preserving and rapid construction of dams and to clarify the explosion moment and influence degree of the spatial–temporal conflicts of construction machinery during the pouring process, a quantification method and algorithm for a “Conflict Bubble” (CB) between construction machines is proposed based on the “Time–Space Microelement” (TSM).

Design/methodology/approach

First, the concept of a CB is proposed, which is defined as the spatial overlap of different entities in the movement process. The subsidiary space of the entity is divided into three layered spaces: the physical space, safe space and efficiency space from the inside to the outside. Second, the processes of “creation,” “transition” and “disappearance” of the CB at different levels with the movement of the entity are defined as the evolution of the spatial–temporal state of the entity. The mapping relationship between the spatial variation and the running time of the layered space during the movement process is defined as “Time–Space” (TS), which is intended to be processed by a microelement.

Findings

The quantification method and algorithm of the CB between construction machinery are proposed based on the TSM, which realizes the quantification of the physical collision accident rate, security risk rate and efficiency loss rate of the construction machinery at any time point or time period. The risk rate of spatial–temporal conflicts in the construction process was calculated, and the outbreak condition of spatial–temporal conflict in the pouring process was simulated and rehearsed. The quantitative calculation results show that the physical collision accident rate, security risk rate and efficiency loss rate of construction machinery at any time point or time period can be quantified.

Originality/value

This study provides theoretical support for the quantitative evaluation and analysis of the spatial–temporal conflict risk in the pouring construction process. It also serves as a reference for the rational organization and scientific decision-making for pouring blocks and provides new ideas and methods for the safe and efficient construction and the scientific and refined management of dams.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2024

Zhengqiang Ding, Li Xu and Yiping Zhang

The purpose of this paper is to investigate the impact of mechanical vibration on the heat transfer and pressure drop characteristics of semicircular channel printed circuit heat…

Abstract

Purpose

The purpose of this paper is to investigate the impact of mechanical vibration on the heat transfer and pressure drop characteristics of semicircular channel printed circuit heat exchangers (PCHEs), while also establishing correlations between vibration parameters and thermal performance.

Design/methodology/approach

By combining experimental and numerical simulation methods, the heat transfer coefficient and pressure drop characteristics of supercritical carbon dioxide (S-CO2) in a semicircular channel with a diameter of 2 mm under vibration conditions were studied. Reinforce the research by conducting computational fluid dynamics studies using ANSYS Fluent 22.0, the experimental results were compared with the numerical simulation results to verify the accuracy of the numerical method.

Findings

The use of vibration has the potential to attenuate the degradation of wall heat transfer caused by buoyancy-induced PCHEs on the upward-facing surface. The heat transfer enhancement (HTE) was maximized by an increase of 18.2%, while the pressure drop enhancement (PDE) was elevated by over 25-fold. The capacity to enhance the heat exchange between S-CO2 and channel walls through increasing vibration intensity is limited, indicating maximum effectiveness in improving thermal performance.

Originality/value

Conducting heat transfer experiments on PCHEs with mechanical vibration enhancement and verifying the accuracy of the vibration numerical model. The relation based on the dimensionless factor is derived. To provide theoretical support for using vibration to enhance the heat transfer capability of PCHEs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 August 2024

H. Thameem Basha, Hyunju Kim and Bongsoo Jang

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or…

Abstract

Purpose

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or retrieval of energy occurs through the heating or cooling of either a liquid or a solid, without undergoing a phase change, within a sensible heat storage system. In a sensible packed bed thermal energy storage system, the structure comprises porous media that form the packed solid material, while fluid occupies the voids. Thus, a cavity, partially filled with a fluid layer and partially with a saturated porous layer, has become important in the investigation of natural convection heat transfer, carrying significant relevance within thermal energy storage systems. Motivated by these insights, the current investigation delves into the convection heat transfer driven by buoyancy and entropy generation within a partially porous cavity that is differentially heated, vertically layered and filled with a hybrid nanofluid.

Design/methodology/approach

The investigation encompasses two distinct scenarios. In the first instance, the porous layer is positioned next to the heated wall, while the opposite region consists of a fluid layer. In the second case, the layers switch places, with the fluid layer adjacent to the heated wall. The system of equations for fluid and porous media, along with appropriate initial and boundary conditions, is addressed using the finite difference method. The Tiwari–Das model is used in this investigation, and the viscosity and thermal conductivity are determined using correlations specific to spherical nanoparticles.

Findings

Comprehensive numerical simulations have been performed, considering controlling factors such as the Darcy number, nanoparticle volume fraction, Rayleigh number, bottom slit position and Hartmann number. The visual representation of the numerical findings includes streamlines, isotherms and entropy lines, as well as plots illustrating average entropy generation and the average Nusselt number. These representations aim to provide insight into the influence of these parameters across a spectrum of scenarios.

Originality/value

The computational outcomes indicate that with an increase in the Darcy number, the addition of 2.5% magnetite nanoparticles to the GO nanofluid results in an enhanced heat transfer rate, showing increases of 0.567% in Case 1 and 3.894% in Case 2. Compared with Case 2, Case 1 exhibits a 59.90% enhancement in heat transfer within the enclosure. Positioning the porous layer next to the partially cooled wall significantly boosts the average total entropy production, showing a substantial increase of 11.36% at an elevated Rayleigh number value. Positioning the hot slit near the bottom wall leads to a reduction in total entropy generation by 33.20% compared to its placement at the center and by 33.32% in comparison to its proximity to the top wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 September 2024

Sami Ul Haq, Muhammad Bilal Ashraf and Arooj Tanveer

The main focus is to provide a non-similar solution for the magnetohydrodynamic (MHD) flow of Casson fluid over a curved stretching surface through the novel technique of the…

Abstract

Purpose

The main focus is to provide a non-similar solution for the magnetohydrodynamic (MHD) flow of Casson fluid over a curved stretching surface through the novel technique of the artificial intelligence (AI)-based Lavenberg–Marquardt scheme of an artificial neural network (ANN). The effects of joule heating, viscous dissipation and non-linear thermal radiation are discussed in relation to the thermal behavior of Casson fluid.

Design/methodology/approach

The non-linear coupled boundary layer equations are transformed into a non-linear dimensionless Partial Differential Equation (PDE) by using a non-similar transformation. The local non-similar technique is utilized to truncate the non-similar dimensionless system up to 2nd order, which is treated as coupled ordinary differential equations (ODEs). The coupled system of ODEs is solved numerically via bvp4c. The data sets are constructed numerically and then implemented by the ANN.

Findings

The results indicate that the non-linear radiation parameter increases the fluid temperature. The Casson parameter reduces the fluid velocity as well as the temperature. The mean squared error (MSE), regression plot, error histogram, error analysis of skin friction, and local Nusselt number are presented. Furthermore, the regression values of skin friction and local Nusselt number are obtained as 0.99993 and 0.99997, respectively. The ANN predicted values of skin friction and the local Nusselt number show stability and convergence with high accuracy.

Originality/value

AI-based ANNs have not been applied to non-similar solutions of curved stretching surfaces with Casson fluid model, with viscous dissipation. Moreover, the authors of this study employed Levenberg–Marquardt supervised learning to investigate the non-similar solution of the MHD Casson fluid model over a curved stretching surface with non-linear thermal radiation and joule heating. The governing boundary layer equations are transformed into a non-linear, dimensionless PDE by using a non-similar transformation. The local non-similar technique is utilized to truncate the non-similar dimensionless system up to 2nd order, which is treated as coupled ODEs. The coupled system of ODEs is solved numerically via bvp4c. The data sets are constructed numerically and then implemented by the ANN.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 February 2024

Yumeng Feng, Weisong Mu, Yue Li, Tianqi Liu and Jianying Feng

For a better understanding of the preferences and differences of young consumers in emerging wine markets, this study aims to propose a clustering method to segment the super-new…

Abstract

Purpose

For a better understanding of the preferences and differences of young consumers in emerging wine markets, this study aims to propose a clustering method to segment the super-new generation wine consumers based on their sensitivity to wine brand, origin and price and then conduct user profiles for segmented consumer groups from the perspectives of demographic attributes, eating habits and wine sensory attribute preferences.

Design/methodology/approach

We first proposed a consumer clustering perspective based on their sensitivity to wine brand, origin and price and then conducted an adaptive density peak and label propagation layer-by-layer (ADPLP) clustering algorithm to segment consumers, which improved the issues of wrong centers' selection and inaccurate classification of remaining sample points for traditional DPC (DPeak clustering algorithm). Then, we built a consumer profile system from the perspectives of demographic attributes, eating habits and wine sensory attribute preferences for segmented consumer groups.

Findings

In this study, 10 typical public datasets and 6 basic test algorithms are used to evaluate the proposed method, and the results showed that the ADPLP algorithm was optimal or suboptimal on 10 datasets with accuracy above 0.78. The average improvement in accuracy over the base DPC algorithm is 0.184. As an outcome of the wine consumer profiles, sensitive consumers prefer wines with medium prices of 100–400 CNY and more personalized brands and origins, while casual consumers are fond of popular brands, popular origins and low prices within 50 CNY. The wine sensory attributes preferred by super-new generation consumers are red, semi-dry, semi-sweet, still, fresh tasting, fruity, floral and low acid.

Practical implications

Young Chinese consumers are the main driver of wine consumption in the future. This paper provides a tool for decision-makers and marketers to identify the preferences of young consumers quickly which is meaningful and helpful for wine marketing.

Originality/value

In this study, the ADPLP algorithm was introduced for the first time. Subsequently, the user profile label system was constructed for segmented consumers to highlight their characteristics and demand partiality from three aspects: demographic characteristics, consumers' eating habits and consumers' preferences for wine attributes. Moreover, the ADPLP algorithm can be considered for user profiles on other alcoholic products.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 August 2024

Yang Liu, Yuefan Hu, Dongxiang Xie, Yongjie Zhang and Jianqiang Chen

The paper aims to propose a generation approach for unstructured surface mesh to speed up mesh generation.

19

Abstract

Purpose

The paper aims to propose a generation approach for unstructured surface mesh to speed up mesh generation.

Design/methodology/approach

The paper proposes a lightweight interactive generation approach for unstructured surface mesh and presents several key technologies to support this approach.

Findings

The experimental results show that the proposed approach is feasible for unstructured meshes and it can accelerate the mesh generation process.

Research limitations/implications

More geometric defects should be covered, and more convenient and efficient interactive means need to be provided.

Practical implications

The proposed approach and key technologies are implemented in NNW-GridStar.UG, which is the unstructured version of the mesh generation software of National Numerical Windtunnel (NNW).

Originality/value

This paper proposes a lightweight interactive approach for unstructured surface mesh generation, which can speed up mesh generation.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 August 2024

Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski and Krzysztof Rusin

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface…

Abstract

Purpose

The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.

Design/methodology/approach

This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The k-ω SST turbulent model and Aupoix's roughness method are used for numerical simulations.

Findings

The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.

Originality/value

The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 August 2024

Muhammad Sohail, Esha Rafique and Kamaleldin Abodayeh

This investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those…

Abstract

Purpose

This investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.

Design/methodology/approach

Following the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.

Findings

Remarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.

Originality/value

Available studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 July 2024

Ilango M.S. and Lakshminarayana Pallavarapu

The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a…

Abstract

Purpose

The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a porous stretching sheet. Since, the study of melting heat transfer has mesmerized the attention of scientists and engineers in the sense of its enormous uses in industrial processes, solidification, casting, and technology.

Design/methodology/approach

Bejan number and entropy are analyzed. Exploration of irreversibility is modeled using the thermodynamics second law. There is a discussion on thermophoresis and Brownian diffusion along with first-order chemical reactions. Adequate transformations are introduced to convert the controlling partial differential equations to ordinary differential equations. The three-phase Lobatto solvers (bvp5c) are used to obtain numerical solutions of the transmitted equations.

Findings

The effects of various factors on temperature, velocity, concentration, Bejan number and entropy rate are shown graphically. The velocity field is enhanced by increasing the melting heat parameter, and it declines for growing magnetic parameters. Temperature is decreased for increasing parametric values of melting heat, porous and Casson parameters. A 7% decrease in the Sherwood distribution is seen when we increase the Brownian motion parameter from 0.1 to 0.2. Similarly, an 11% decrement is found in the Nusselt distribution for increasing the Brinkman number from 0.5 to 1.

Originality/value

Entropy and Bejan number experience dual tendencies whenever the melting heat parameter increases. Nusselt number and skin friction experience the opposite behavior for the increasing values of melting parameter. Sherwood number decreases for the increasing values of melting parameter. The velocity profile is directly related to the melting parameter and inversely related to porous and magnetic parameters. Thermophoresis and Brinkman parameters boost the temperature profile and it is controlled by melting and porous parameters. Some notable fields where the present study is used inevitably are silicon wafering, geothermal energy recovery and semiconductor manufacturing.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 751