Search results

1 – 10 of 92
Article
Publication date: 17 July 2009

Hamidreza Arabshahi and Vahid Lotfi

The purpose of this paper is to obtain an insight into the effects of sliding and/or joint opening at the contraction, perimeter and concrete lift joints on the nonlinear seismic…

Abstract

Purpose

The purpose of this paper is to obtain an insight into the effects of sliding and/or joint opening at the contraction, perimeter and concrete lift joints on the nonlinear seismic response of arch dams.

Design/methodology/approach

The seismic behavior of a typical thin double curvature arch dam is studied by a nonlinear finite element program developed by the authors. Joints are modeled with the use of zero thickness interface elements. Various constitutive relationships are implemented to account for sliding and opening along the joints. Effects of joint sliding parameters and foundation rock flexibility are also considered in the analyses.

Findings

The findings provide information about dynamic stress distribution through the dam body and stability of the dam as a whole and also the local stability of the most critical concrete blocks in the dam body.

Practical implications

Useful information for designing new arch dams or seismic evaluation of constructed dams.

Originality/value

This paper takes into account the stability of concrete blocks in the dam body as well as stability of the structure as a whole. Except for contraction joints, perimeter and concrete lift joints are also modeled. Practical as well as detailed models of sliding are provided for the analyses. The paper offers practical help to design and dam engineers.

Details

Engineering Computations, vol. 26 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Siqi Dou, Junjie Li and Fei Kang

Parameter identification is an important issue in structural health monitoring and damage identification for concrete dams. The purpose of this paper is to introduce a novel…

Abstract

Purpose

Parameter identification is an important issue in structural health monitoring and damage identification for concrete dams. The purpose of this paper is to introduce a novel adaptive fireworks algorithm (AFWA) into inverse analysis of parameter identification.

Design/methodology/approach

Swarm intelligence algorithms and finite element analysis are integrated to identify parameters of hydraulic structures. Three swarm intelligence algorithms: AFWA, standard particle swarm optimization (SPSO) and artificial bee colony algorithm (ABC) are adopted to make a comparative study. These algorithms are introduced briefly and then tested by four standard benchmark functions. Inverse analysis methods based on AFWA, SPSO and ABC are adopted to identify Young’s modulus of a concrete gravity dam and a concrete arch dam.

Findings

Numerical results show that swarm intelligence algorithms are powerful tools for parameter identification of concrete structures. The proposed AFWA-based inverse analysis algorithm for concrete dams is promising in terms of accuracy and efficiency.

Originality/value

Fireworks algorithm is applied for inverse analysis of hydraulic structures for the first time, and the problem of parameter selection in AFWA is studied.

Article
Publication date: 10 April 2020

Jiang Hu and Fuheng Ma

The purpose of this study is to develop and verify a methodology for a zoned deformation prediction model for super high arch dams, which is indeed a panel data-based regression…

Abstract

Purpose

The purpose of this study is to develop and verify a methodology for a zoned deformation prediction model for super high arch dams, which is indeed a panel data-based regression model with the hierarchical clustering on principal components.

Design/methodology/approach

The hierarchical clustering method is used to highlight the main features of the time series. This method is used to select the typical points of the measured ambient and concrete temperatures as predictors and divide the deformation observation points into groups. Based on this, the panel data of each zone can be established, and its type can be judged using F and Hausman tests successively. Then hydrostatic–temperature–time–season models for zones can be constructed. Through the comparative analyses of the distributions and the fitted coefficients of these zones, the spatial deformation mechanism of a dam can be identified. A super high arch dam is taken as a case study.

Findings

According to the measured radial displacements during the initial operation period, the investigated pendulums are divided into four zones. After tests, fixed-effect regression models are established. The comparative analyses show that the dam deformation conforms to the natural condition. The factors such as the unstable temperature field and the nonlinear time-dependent effect have obvious effects on the dam deformation. The results show the efficiency of the proposed methodology in zoning and prediction modeling for deformation of super high arch dams and the potential to mining dam deformation mechanism.

Originality/value

A zoned deformation prediction model for super high arch dams is proposed where hierarchical clustering on principal component method and panel data model are combined.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 February 2021

Vahid Lotfi and Ali Lotfi

Subsequently, the response of idealized Morrow Point arch dam is studied due to stream, vertical and cross-stream ground motions for reservoir bottom/sidewalls conditions of both…

Abstract

Purpose

Subsequently, the response of idealized Morrow Point arch dam is studied due to stream, vertical and cross-stream ground motions for reservoir bottom/sidewalls conditions of both fully reflective and absorptive. For each combination, different orders of Hagstrom–Warburton (HW) condition are evaluated from accuracy point of view by comparing them against exact solutions. It should be emphasized that normalized length of reservoir near-field region is taken as a very low value of L/H = 0.2 during this process which makes it a very challenging test for any kind of truncation boundary condition.

Design/methodology/approach

In present study, dynamic analysis of concrete arch dam-reservoir systems is formulated by FE-(FE-TE) approach [i.e. finite element-(finite element-truncation element)]. In this technique, dam and reservoir are discretized by solid and fluid finite elements. Moreover, the HW high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially explained in details.

Findings

The trend in gaining accuracy with increase in order of HW condition were basically the same for all three types of excitations under both full reflective and absorptive reservoir bottom/sidewalls conditions. The only exception was for cross-stream excitation response which was showing less accurate results near the first major peak for moderate orders of HW (e.g. O3-2) in comparison to what was observed for responses due to symmetric excitations (stream and vertical). This is mainly attributed to the selection of evanescent-type parameters of HW condition which is based on the first symmetric mode of reservoir. However, it is noted that error diminishes even for cross-stream excitation as order increases. High orders of HW condition, such as O5-5 considered herein, generate highly accurate responses for all three possible excitations under both types of full reflective and absorptive reservoir bottom/sidewalls conditions. It is such that responses are hardly distinguishable from corresponding exact responses. This reveals that proposed FE-(FE-TE) analysis technique based on HW condition is quite successful, and one may fully rely on that for accurate and efficient analysis of concrete arch dam-reservoir systems.

Originality/value

Dynamic analysis of concrete arch dam-reservoir system is formulated by new method. HW high-order condition is applied for a very low and challenging reservoir length. Different orders are evaluated against exact solution with excellent agreement. Generalized matrices of truncation element are derived for FEM programmers. The method is discussed for all types of excitation and reservoir base conditions.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 September 2019

Majid Pouraminian and Somayyeh Pourbakhshian

This paper aims to study the shape of the concrete arched bridge by particle swarm optimization algorithm.

Abstract

Purpose

This paper aims to study the shape of the concrete arched bridge by particle swarm optimization algorithm.

Design/methodology/approach

Finite element model of open-spandrel concrete arch bridges was constructed using a number of parameters. Design variables of optimization problem include height of skewback abutment, height of arch crown, position of crown with respect to global axes and left and right radius of up and down arches. After parametric modeling of bridge geometry and application of multi-objective particle swarm optimization, the shape optimization of bridge arch was determined. The concrete volume used in bridge substructure construction and maximum principal tensile stress of concrete arch body was adopted as two objective functions in this study. The optimization problem aims to minimize the two objective functions. Geometric and stress constraints are also included in the problem.

Findings

Based on the results presented in the paper, the Pareto front is generated which helps the decision-maker or designer to pick the compromise solution from among 20 optimum designs according to their subjective preferences or engineering judgment, respectively. Moreover, to help the decision-maker, the two multiple objective decision-making methods were used for selection of the best solution from among nondominated solutions.

Originality/value

This research aims to solve an interesting optimization problem in structural engineering. Optimization of arch bridges structure was done for reducing construction costs and increasing safety for the first time.

Details

World Journal of Engineering, vol. 16 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 July 2020

Amin Alvanchi, Zahra Bajalan and Pooya Iravani

Dams require high-volume of construction materials and operations over the life cycle. This paper aims to select a proper type of dam structure that can significantly contribute…

Abstract

Purpose

Dams require high-volume of construction materials and operations over the life cycle. This paper aims to select a proper type of dam structure that can significantly contribute to the sustainability of dam projects.

Design/methodology/approach

This research proposes a complementary fuel consumption and carbon dioxide (CO2) emission assessment method for the alternate dam structure types to assist decision-makers in selecting sustainable choices. Related equations are developed for two common earthen and rock-fill dam structures types in Iran. These equations are then successfully applied to two real dam project cases where the significance of the achieved results are assessed and discussed.

Findings

The achieved results of the case studies demonstrate a high deviation of up to 41.3% in CO2 emissions comparing alternate dam structure scenarios of earthen and rock-fill dam structures. This high deviation represents an important potential for CO2 emission reduction considering the high volume of the emission in large dam projects.

Originality/value

The life cycle emission assessment of the alternate dam structures, proposed in this research as a novel complementary factor, can be used in the decision-making process of dam projects. The results in this research identify high potential sustainability improvement of dam projects as a result of the proposed method.

Article
Publication date: 16 March 2020

Zhenyang Zhu, Yi Liu, Zhe Fan, Sheng Qiang, Zhiqiang Xie, Weimin Chen and Congcong Wu

The buried pipe element method can be used to calculate the temperature of mass concrete through highly efficient computing. However, in this method, temperatures along cooling…

Abstract

Purpose

The buried pipe element method can be used to calculate the temperature of mass concrete through highly efficient computing. However, in this method, temperatures along cooling pipes and the convection coefficient of the cooling pipe boundary should be improved to achieve higher accuracy. Thus, there is a need to propose a method for improvement.

Design/methodology/approach

According to the principle of heat balance and the temperature gradient characteristics of concrete around cooling pipes, a method to calculate the water temperature along cooling pipes using the buried pipe element method is proposed in this study. By comparing the results of a discrete algorithm and the buried pipe element method, it was discovered that the convection coefficient of the cooling pipe boundary for the buried pipe element method is only related to the thermal conductivity of concrete; therefore, it can be calculated by inverse analysis.

Findings

The results show that the buried pipe element method can achieve the same accuracy as the discrete method and simulate the temperature field of mass concrete with cooling pipes efficiently and accurately.

Originality/value

This new method can improve the calculation accuracy of the embedded element method and make the calculation results more reasonable and reliable.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 January 2024

Vahid Lotfi and Hesamedin Abdorazaghi

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time…

Abstract

Purpose

The response of the Pine Flat dam–water–foundation rock system is studied by a new described approach (i.e. FE-(FE-TE)-FE). The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by the FE-(FE-HE)-FE approach (referred to as exact method which employs a rigorous fluid hyper-element). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Design/methodology/approach

In the present study, dynamic analysis of a typical concrete gravity dam–water–foundation rock system is formulated by the FE-(FE-TE)-FE approach. In this technique, dam and foundation rock are discretized by plane solid finite elements while, water domain near-field region is discretized by plane fluid finite elements. Moreover, the H-W (i.e. Hagstrom–Warburton) high-order condition is imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model.

Findings

High orders of H-W condition, such as O5-5 considered herein, generate highly accurate responses for both possible excitations under both types of full reflective and absorptive reservoir bottom conditions. It is such that transfer functions are hardly distinguishable from corresponding exact responses obtained through the FE-(FE-HE)-FE approach in time harmonic analyses. This is controlled for both low and high normalized reservoir length cases (L/H = 1 and 3). Moreover, it can be claimed that transient analysis leads practically to exact results (in numerical sense) when one is employing high order H-W truncation element. In other words, the results are not sensitive to reservoir normalized length under these circumstances.

Originality/value

Dynamic analysis of concrete gravity dam–water–foundation rock systems is formulated by a new method. The salient aspect of the technique is that it utilizes H-W high-order condition at the truncation boundary. The method is discussed for all types of excitation and reservoir bottom conditions.

Article
Publication date: 13 March 2020

Zhiqiang Xie, Lei Wang, Zhengyang Zhu, Zhi Fu and Xingdong Lv

The purpose of this paper is to introduce an interval finite element method (IFEM) to simulate the temperature field of mass concrete under multiple influence uncertainties e.g…

Abstract

Purpose

The purpose of this paper is to introduce an interval finite element method (IFEM) to simulate the temperature field of mass concrete under multiple influence uncertainties e.g. environmental temperature, material properties, pouring construction and pipe cooling.

Design/methodology/approach

Uncertainties of the significant factors such as the ambient temperature, the adiabatic temperature rise, the placing temperature and the pipe cooling are comprehensively studied and represented as the interval numbers. Then, an IFEM equation is derived and a method for obtaining interval results based on monotonicity is also presented. To verify the proposed method, a non-adiabatic temperature rise test was carried out and subsequently simulated with the method. An excellent agreement is achieved between the simulation results and the monitoring data.

Findings

An IFEM method is proposed and a non-adiabatic temperature rise test is simulated to verify the method. The interval results are discussed and compared with monitoring data. The proposed method is found to be feasible and effective.

Originality/value

Compared with the traditional finite element methods, the proposed method taking the uncertainty of various factors into account and it will be helpful for engineers to gain a better understanding of the real condition.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2006

Chongbin Zhao, T. Nishiyama and A. Murakami

The main purpose of this paper is to present and use the particle simulation method to explicitly simulate the spontaneous crack initiation phenomenon in brittle materials, and to…

Abstract

Purpose

The main purpose of this paper is to present and use the particle simulation method to explicitly simulate the spontaneous crack initiation phenomenon in brittle materials, and to compare the particle simulation results with experimental ones on the laboratory scale.

Design/methodology/approach

Using the particle simulation method, the brittle material is simulated as an assembly of particles so that the microscopic mechanism of inter‐ and intra‐particle crack initiation can be straightforwardly considered on the microscopic scale. A laboratory test has been conducted using a gypsum sample model to validate the particle simulation method for explicitly simulating the spontaneous crack initiation phenomenon.

Findings

The paper finds that in terms of simulating the macroscopic sliding surface along or around the contact plane between a block and its foundation, both the laboratory test and the particle simulation have produced consistent results. This indicated that the particle simulation method is capable of simulating macroscopic cracks through simulating conglomerations and accumulations of microscopic crack initiation within the brittle material. Compared with other numerical methods, the particle simulation method is more suitable for explicitly and effectively simulating spontaneous crack initiation problems on the microscopic scale in brittle materials.

Originality/value

The particle simulation method can be used to explicitly and effectively simulate the spontaneous crack initiation on the microscopic scale in brittle materials. It can be also used to simulate the macroscopic sliding surface along or around the contact plane between a block and its foundation. The experimental results of simulating the spontaneous crack initiation on the laboratory scale in brittle materials are very valuable for validating the numerical simulation results obtained not only from the particle simulation method, but also from other numerical simulation methods.

Details

Engineering Computations, vol. 23 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 92