Search results

1 – 10 of 671
Article
Publication date: 27 September 2011

A. Grujicic, M. LaBerge, X. Xie, G. Arakere, B. Pandurangan, M. Grujicic, K.J. Jeray and S.L. Tanner

The purpose of this paper is to compare fracture‐fixation and bone‐healing promotion efficacies of an intramedullary (IM) nail‐type and an external osteosynthesis plate‐type…

Abstract

Purpose

The purpose of this paper is to compare fracture‐fixation and bone‐healing promotion efficacies of an intramedullary (IM) nail‐type and an external osteosynthesis plate‐type femoral trochanteric‐fracture implants using the results of a combined multi‐body dynamics and finite element analyses. For both implants, fracture fixation was obtained using a dynamic hip blade which is anchored to the femur head on one end and is connected to the IM rod/plate on the other. The analysis was carried out for two pre‐fracture conditions of the femur: healthy and osteoporotic.

Design/methodology/approach

The musculoskeletal dynamics portion of the analysis was used to obtain realistic physiological loading conditions (i.e. muscle forces and joint reaction forces and moments) associated with four typical everyday activities of a patient, namely, walking, lunging, cycling and egress (i.e. exiting a passenger vehicle). The subsequent structural finite element analysis of the fractured femur/implant assembly was employed to quantify fracture‐fixation efficacy (as measured by the extents of lateral (found to be minor), flexural and torsional displacements of the two femur fragments) and the bone‐healing promotion efficacy (as quantified by the fraction of the fractured surface area which experienced desirable contact pressures).

Findings

The results obtained show that, in general, the IM‐rod type of implant out‐performs the osteosynthesis plate type of implant over a large range of scenarios involving relative importance of the bone‐healing promotion and fracture‐fixation efficacies, health condition of the femur and the activity level of the patient. More specifically, the more active the patient and the larger extent of osteoporosis in the femur, the more justifiable is the use of the IM‐rod type of implant.

Originality/value

The present approach enables assessment of the fracture‐fixation performance of orthopedic implants under physiologically realistic loading conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 August 2014

Shuangyan Lei, Matthew C. Frank, Donald D. Anderson and Thomas D. Brown

The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human…

Abstract

Purpose

The purpose of this paper is to present a new method for representing heterogeneous materials using nested STL shells, based, in particular, on the density distributions of human bones.

Design/methodology/approach

Nested STL shells, called Matryoshka models, are described, based on their namesake Russian nesting dolls. In this approach, polygonal models, such as STL shells, are “stacked” inside one another to represent different material regions. The Matryoshka model addresses the challenge of representing different densities and different types of bone when reverse engineering from medical images. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data using computed tomography (CT), thereby delineating regions of progressively increasing bone density. These nested shells can represent regions starting with the medullary (bone marrow) canal, up through and including the outer surface of the bone.

Findings

The Matryoshka approach introduced can be used to generate accurate models of heterogeneous materials in an automated fashion, avoiding the challenge of hand-creating an assembly model for input to multi-material additive or subtractive manufacturing.

Originality/value

This paper presents a new method for describing heterogeneous materials: in this case, the density distribution in a human bone. The authors show how the Matryoshka model can be used to plan harvesting locations for creating custom rapid allograft bone implants from donor bone. An implementation of a proposed harvesting method is demonstrated, followed by a case study using subtractive rapid prototyping to harvest a bone implant from a human tibia surrogate.

Details

Rapid Prototyping Journal, vol. 20 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 December 2020

Chunyan Yao, Dongdong Chen, Zhongli Zheng, Qiangsheng Wang and Kaijie Fu

The purpose of this study is to obtain an effective implant with porous structures on its surface, named porous-surfaced implant, which helps to improve the overall stability of…

Abstract

Purpose

The purpose of this study is to obtain an effective implant with porous structures on its surface, named porous-surfaced implant, which helps to improve the overall stability of the implant and promote the combination of implant and alveolar bone.

Design/methodology/approach

Porous-surfaced implants with a porosity of 16%, 21%and 32% were designed and the effect of porosity on the strength of the implant was analyzed by ABAQUS software. Porous-surfaced implants with different porosity were printed by selective laser melting and the surface morphology was observed. Animal experiments of implants with porous structures and coating were carried out in healthy beagle dogs. The experimental group was treated with hydroxyapatite coating and the control group was not treated. Bone volume (BV) and total volume (TV) of the implant surface of the experimental group and control group were calculated by Skyscan CTvol software.

Findings

With the increase of porosity of porous-surfaced implants, the neck stress of the porous-surfaced implants increased and their strength decreased. In addition, in animal vivo experiments, the ratio value of BV to TV of the porous-surfaced implants was between 55.38% and 79.86%, which was the largest when the porosity of porous-surfaced implants was 16%. The internal and surrounding bone formation content of porous-surfaced implants with hydroxyapatite coating was higher than porous-surfaced implants without coating.

Originality/value

The results of this study show that the pores on the surface of implants can be filled with the new bone and porous-surfaced implants with 16% porosity provide better space for the growth of new bone. The porous structures with hydroxyapatite coating are beneficial to the growth of new bone around implants. The results of this study are helpful to improve the overall stability of implants and to promote the combination of implant and alveolar bone.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 October 2018

Zuhao Li, Chenyu Wang, Chen Li, Zhonghan Wang, Fan Yang, He Liu, Yanguo Qin and Jincheng Wang

This paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants

608

Abstract

Purpose

This paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants through a series of cases operated at The Second Hospital of Jilin University were presented.

Design/methodology/approach

This paper is available to practitioners who are use 3DP implants in orthopedics. This review began with the deficiency of traditional prostheses and basic concepts of 3DP implants. Then, representative 3DP clinical cases were summarized and compared, and the experiences using customized prostheses and directions for future potential development are also shown.

Findings

The results obtained from the follow-up of clinical applications of 3DP implants show that the 3D designed and printed metal implants could exhibit good bone defect matching, quick and safe joint functional rehabilitation as well as saving time in surgery, which achieved high patient satisfaction collectively.

Originality/value

Single center experiences of 3DP metal implants design were shared and the detailed technical points between various regions were compared and analyzed. In conclusion, the 3DP technology is infusive and will present huge potential to reform future orthopedic practice.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2019

Sandeep W. Dahake, Abhaykumar M. Kuthe and Mahesh B. Mawale

This study aims to find the usefulness of the customized surgical osteotomy guide (CSOG) for accurate mandibular tumor resection for boosting the accuracy of prefabricated…

107

Abstract

Purpose

This study aims to find the usefulness of the customized surgical osteotomy guide (CSOG) for accurate mandibular tumor resection for boosting the accuracy of prefabricated customized implant fixation in mandibular reconstructions.

Design/methodology/approach

In all, 30 diseased mandibular RP models (biomodels) were allocated for the study (for experimental group [n = 15] and for control group [n = 15]). To reconstruct the mandible with customized implant in the experimental group, CSOGs and in control group, no CSOG were used for accurate tumor resections. In control group, only preoperative virtual surgical planning (VSP) and reconstructed RP mandible model were used for the reference. Individually each patient’s preoperative mandibular reconstructions data of both the groups were superimposed to the preoperative VSP of respective patient by registering images with the non-surgical side of the mandible. In both the groups, 3D measurements were taken on the reconstructed side and compared the preoperative VSP and postoperative reconstructed mandible data. The sum of the differences between pre and postoperative data was considered as the total error. This procedure was followed for both the groups and compared the obtained error between the two groups using statistical analysis.

Findings

The use of CSOG for accurate tumor resection and exact implant fixation in mandibular reconstruction produced a smaller total error than without using CSOG.

Originality/value

The results showed that, benefits provided with the use of CSOG in mandibular reconstruction justified its use over the without using CSOG, even in free hand tumor resection using rotating burr.

Article
Publication date: 22 October 2019

Ravishanker Baliga, Sharat K. Rao, Raghuvir Pai, Satish B. Shenoy, Atmananda K. Hegde, Shubham Swaroop and Abhijeet Shetkar

The purpose of this paper is to investigate by means of finite element analysis (FEA), the effect of polyethylene insert thickness and implant material, under axial loading…

Abstract

Purpose

The purpose of this paper is to investigate by means of finite element analysis (FEA), the effect of polyethylene insert thickness and implant material, under axial loading following TKA.

Design/methodology/approach

The 3D geometric model of bone was processed using the CT scan data by MIMICS (3matic Inc.), package. Implant components were 3D scanned and subsequently 3D modeled using ANSYS Spaceclaim and meshed in Hypermesh (Altair Hyperworks). The assembled, meshed bone-implant model was then input to ABAQUS for FE simulations, considering axial loading.

Findings

Polyethylene insert thickness was found to have very little or no significance (p>0.05) on the mechanical performance, namely, stress, strain and stress shielding of bone-implant system. Implant material was found to have a very significant effect (p<0.05) on the performance parameters and greatly reduced the high stress zones up to 60 percent on the tibial flange region and periprosthetic region of tibia.

Originality/value

Very few FEA studies have been done considering a full bone with heterogeneous material properties, to save computational time. Moreover, four different polyethylene insert thickness with a metal-backed and all-poly tibial tray was considered as the variables affecting the bone-implant system response, under static axial loading. The authors believe that considering a full bone shall lead to more precise outcomes, in terms of the response of bone-implant system, namely, stress, strains and stress shielding in the periprosthetic region, to loading.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 September 2019

Pataravit Rukskul, Waraporn Suvannapruk and Jintamai Suwanprateeb

The purpose of this study is to evaluate the intra- and post-operative performance and safety of direct three dimensional printing (3DP) porous polyethylene implants in cranial…

Abstract

Purpose

The purpose of this study is to evaluate the intra- and post-operative performance and safety of direct three dimensional printing (3DP) porous polyethylene implants in cranial reconstruction.

Design/methodology/approach

Prefabricated porous polyethylene implants were prepared by direct 3DP, and cranioplasty implantation was performed. Postoperative aesthetics, patient satisfaction, firmness of the implant, reactions to the implant and 3D computed tomography (CT) scanning were assessed after 2, 6, 12 and 24 months postoperatively.

Findings

No complications after surgery were encountered. Excellent aesthetic results were obtained in all cases, and all the patients were satisfied with the reconstruction outcome. Bone density structure was found to ingrowth into these direct 3DP porous polyethylene implants and the content increased with increasing follow-up times.

Research limitations/implications

This study was a pilot study conducted in a single group and evaluated in a short-term period. The bone formation and ingrowth were indirectly assessed by 3D CT evaluation.

Originality/value

This work reported the use and evaluation of direct 3DP porous polyethylene in middle- to large-sized cranial reconstructions. It evidently showed the bonding of implants to surrounding tissues which would result in the long-term stability and infection resistance of the implant.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 January 2014

Timothy J. Horn, Ola L.A. Harrysson, Harvey A. West II, Jeffrey P. Little and Denis J. Marcellin-Little

The aim of this study is to describe an improved experimental substrate for the mechanical testing of patient-specific implants fabricated using direct metal additive…

Abstract

Purpose

The aim of this study is to describe an improved experimental substrate for the mechanical testing of patient-specific implants fabricated using direct metal additive manufacturing processes. This method reduces variability and sample size requirements and addresses the importance of geometry at the bone/implant interface.

Design/methodology/approach

Short-fiber glass/resin materials for cortical bone and polyurethane foam materials for cancellous bone were evaluated using standard tensile coupons. A method for fabricating bone analogs with patient-specific geometries using rapid tooling is presented. Bone analogs of a canine radius were fabricated and compared to cadaveric specimens in several biomechanical tests as validation.

Findings

The analog materials exhibit a tensile modulus that falls within the range of expected values for cortical and cancellous bone. The tensile properties of the cortical bone analog vary with fiber loading. The canine radius models exhibited similar mechanical properties to the cadaveric specimens with a reduced variability.

Research limitations/implications

Additional replications involving different bone geometries, types of bone and/or implants are required for a full validation. Further, the materials used here are only intended to mimic the mechanical properties of bone on a macro scale within a relatively narrow range. These analog models have not been shown to address the complex microscopic or viscoelastic behavior of bone in the present study.

Originality/value

Scientific data on the formulation and fabrication of bone analogs are absent from the literature. The literature also lacks an experimental platform that matches patient-specific implant/bone geometries at the bone implant interface.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2021

Kashif Ishfaq, Mudassar Rehman, Ahmed Raza Khan and Yanen Wang

Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more…

Abstract

Purpose

Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more from these aforesaid issues. It is expected that these issues in human beings will ultimately reach 2.1 billion by 2050 worldwide. Furthermore, the increase in traffic accidents in young people throughout the world has significantly emerged the need for artificial implants. Their implantation can act as a substitute for fractured bones or disordered joints. Therefore, this study aims to focus on electron beam melted titanium (Ti)-based orthopaedic implants along with their recent trends in the field.

Design/methodology/approach

The main contents of this work include the basic theme and background of the metal-based additive manufacturing, different implant materials specifically Ti alloys and their classification based on crystallographic transus temperature (including α, metastable β, β and α + β phases), details of electron beam melting (EBM) concerning its process physics, various control variables and performance characteristics of EBMed Ti alloys in orthopaedic and orthodontic implants, applications of EBMed Ti alloys in various load-bearing implants, different challenges associated with the EBMed Ti-based implants along with their possible solutions. Recent trends and shortfalls have also been described at the end.

Findings

EBM is getting significant attention in medical implants because of its minor issues as compared to conventional fabrication practices such as Ti casting and possesses a significant research potential to fabricate various medical implants. The elastic modulus and strength of EBMed ß Ti-alloys such as 24Nb-4Zr-8Sn and Ti-33Nb-4Sn are superior compared to conventional Ti for orthopaedic implants. Beta Ti alloys processed by EBM have near bone elastic modulus (approximately 35–50 GPa) along with improved tribo-mechanical performance involving mechanical strength, wear and corrosion resistance, along with biocompatibility for implants.

Originality/value

Advances in EBM have opened the gateway Ti alloys in the biomedical field explicitly ß-alloys because of their unique biocompatibility, bioactivity along with improved tribo-mechanical performance. Less significant work is available on the EBM of Ti alloys in orthopaedic and orthodontic implants. This study is directed solely on the EBM of medical Ti alloys in medical sectors to explore their different aspects for future research opportunities.

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 671