Search results

1 – 10 of 31
Article
Publication date: 5 June 2017

Roman Kolenak

This paper aims to investigate the effect of solder alloying with a small amount of La and Y on bond formation with the Si and Cu substrates.

Abstract

Purpose

This paper aims to investigate the effect of solder alloying with a small amount of La and Y on bond formation with the Si and Cu substrates.

Design/methodology/approach

Bi2La and Bi2Y solders were studied. Soldering was performed using a fluxless method in air and with ultrasonic activation.

Findings

It was found that in the process of ultrasonic soldering, the La and Y were distributed at the interface with Si and Cu substrates, which enhanced the bond formation. Addition of La or Y elements in a Bi-based solder also ensured wetting of non-metallic materials such as Si, Al2O3 and SiC ceramics.

Originality/value

The addition of lanthanides offers a method for ensuring wetting of non-metallic materials. The bond with Si was of an adhesive character without the formation of a new contact interlayer. This resulted in lower shear strength of the bond with Si (8-10 MPa). The shear strength of the bond with a Cu substrate was 22-30 MPa.

Details

Soldering & Surface Mount Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 January 2018

Petr Veselý, Eva Horynová, Jiří Starý, David Bušek, Karel Dušek, Vít Zahradník, Martin Plaček, Pavel Mach, Martin Kučírek, Vladimír Ježek and Milan Dosedla

The purpose of this paper is to increase the reliability of manufactured electronics and to reveal reliability significant factors. The experiments were focused especially on the…

Abstract

Purpose

The purpose of this paper is to increase the reliability of manufactured electronics and to reveal reliability significant factors. The experiments were focused especially on the influence of the reflow oven parameters presented by a heating factor.

Design/methodology/approach

The shear strength of the surface mount device (SMD) resistors and their joint resistance were analyzed. The resistors were assembled with two Sn/Ag/Cu-based and one Bi-based solder pastes, and the analysis was done for several values of the heating factor and before and after isothermal aging. The measurement of thickness of intermetallic compounds was conducted on the micro-sections of the solder joints.

Findings

The shear strength of solder joints based on the Sn/Ag/Cu-based solder alloy started to decline after the heating factor reached the value of 500 s · K, whereas the shear strength of the solder alloy based on the Bi alloy (in the measured range) always increased with an increase in the heating factor. Also, the Bi-based solder joints showed shear strength increase after isothermal aging in contrast to Sn/Ag/Cu-based solder joints, which showed shear strength decrease.

Originality/value

The interpretation of the results of such a comprehensive measurement leads to a better understanding of the mutual relation between reliability and other technological parameters such as solder alloy type, surface finish and parameters of the soldering process.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 April 2022

Lina Syazwana Kamaruzzaman and Yingxin Goh

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties…

Abstract

Purpose

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties, hardness and shear strength. Then, the effects of alloying in Sn-Bi solder are compared in terms of the discussed mechanical properties. The fracture morphologies of tensile shear tested solders are also reviewed to correlate the microstructural changes with mechanical properties of Sn-Bi-X solder alloys.

Design/methodology/approach

A brief introduction on Sn-Bi solder and reasons to enhance the mechanical properties of Sn-Bi solder. The latest reports on Sn-Bi and Sn-Bi-X solders are combined in the form of tables and figures for each section. The presented data are discussed by comparing the testing method, technical setup, specimen dimension and alloying element weight percentage, which affect the mechanical properties of Sn-Bi solder.

Findings

The addition of alloying elements could enhance the tensile properties, hardness and/or shear strength of Sn-Bi solder for low-temperature solder application. Different weight percentage alloying elements affect differently on Sn-Bi solder mechanical properties.

Originality/value

This paper provides a compilation of latest report on tensile properties, hardness, shear strength and deformation of Sn-Bi and Sn-Bi-X solders and the latest trends and in-depth understanding of the effect of alloying elements in Sn-Bi solder mechanical properties.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 June 2023

Wei Lin, Xuewen Li, Bing Tu, Chaohua Zhang and Yulong Li

This study aims to analyze the wettability of the self-developed Sn–Bi–Zn solder and to conduct a series of analysis on the wetting kinetics, diffusion phenomenon and interfacial…

Abstract

Purpose

This study aims to analyze the wettability of the self-developed Sn–Bi–Zn solder and to conduct a series of analysis on the wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–Bi–Zn solder on Cu substrate.

Design/methodology/approach

The wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–Bi–Zn solder on Cu substrate were analyzed by experiments. The interface was observed by scanning electron microscope to study the effect of Zn content on its interface.

Findings

With the increase in brazing temperature, the final spreading equivalent radius of the solder increases significantly, and the final contact angle of the solder decreases significantly. In addition, when the Zn content is 1%, the spreading effect of solder is the best, the equivalent radius is the largest and the contact angle is the smallest. According to the microstructural analysis, the thick intermetallic compounds layer of the Sn–15Bi–xZn solders on the Cu substrate can be effectively decreased by adding appropriate Zn content.

Originality/value

The wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–15Bi–xZn solder on Cu substrate at different temperatures have not been studied yet.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 October 2019

Bangyao Han, Fenglian Sun, Tianhui Li and Yang Liu

The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new…

Abstract

Purpose

The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new Au/Sn-5Sb-1Cu-0.1Ni-0.1Ag/(Au)Ni solder joint during the high temperature aging.

Design/methodology/approach

Sn-5Sb-1Cu-0.1Ni-0.1Ag solder balls (500 µm in diameter), heat sink with structure of 7.4 µm Au layer on 5 µm Ni-plated Cu alloy and Si chip with 5.16 µm plated Au were used to fabricate micro-solder joints. The joints were performed in a furnace at 150°C for 150, 250 and 350 h aging. The samples were polished and deep etched before analyzed by metallographic microscope and scanning electron microscopy, respectively. Energy dispersive x-ray spectroscopy was used to identify the composition of the IMCs.

Findings

ß-(Au,Ni,Cu)10Sn phase is formed during the soldering process. The IMCs evolution has two periods during the aging. The first is the ξ-(Au,Ni,Cu)5Sn, ξ-(Au,Cu)5Sn and δ-AuSn were formed and grew to form a full-compound joint after about 150 h aging. The second is the conversion of the full-compound joint. The IMCs converted to ξ′ phase when the aging time extends to 250 h, and transformed to ε-(Au,Ni,Cu)Sn2 and η-(Au,Ni,Cu)Sn4 after 350 h aging. The thicker gold layer and thinner solder joint can promote the growth of the IMCs. ß-(Au,Ni,Cu)10Sn emerged in Au/SnSb-CuNiAg/(Au)Ni in this research, which is not usually found.

Originality/value

The results in this study have a significant meaning for the application of the new Sn-5Sb-1Cu-0.1Ni-0.1Ag in harsh conditions.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 April 2013

Roman Koleňák and Michal Chachula

The purpose of this paper is to study Bi‐11Ag solder for higher application temperatures. The aim of the research work was to determine the soldering, thermal and mechanical…

Abstract

Purpose

The purpose of this paper is to study Bi‐11Ag solder for higher application temperatures. The aim of the research work was to determine the soldering, thermal and mechanical properties of Bi‐11Ag solder.

Design/methodology/approach

To determine the melting point interval of experimental Bi‐11Ag solder, DSC analysis was performed. The contact angles were studied on a copper, nickel and silver substrate by use of a sessile drop method. Wettability tests were realised at a temperature of 380°C in a shielding atmosphere (90% N2+10% H2). Based on experience achieved with wetting angle measurements, the specimens for measurement of shear strength of Cu, Ni and Ag/Bi‐11Ag joints were fabricated. EDX analysis was used for the study of the solder interaction with the surface of the three metallic substrates.

Findings

The best wettability at soldering in a shielding atmosphere was achieved with silver. The wetting angle at 30 min attained the value of 23°. The worst wettability was observed on copper, where at 30 min the wetting angle was 55°. Average shear strength varied from 31 to 45 MPa. The highest strength was obtained with the Cu substrate whereas the lowest was with the Ni substrate. The lowest strength achieved with the Ni substrate was caused by formation of brittle intermetallic phase NiBi3. Joint formation is realised by eutectic reaction at the contact of Bi with the surface of the copper substrate. Similar joint formation by eutectic reaction occurs also at Bi interaction with the surface of the Ag substrate. At Bi interaction with the nickel substrate a new intermetallic phase (NiBi3) is formed.

Originality/value

Wettability of Bi‐11Ag solder on Cu, Ag and Ni substrates was determined at application of a shielding atmosphere (90% N2+10% H2). Wettability was determined also at application of ZnCl2‐NH4Cl flux. The shear strength of Bi‐11Ag on different substrates was determined. The mechanism of joint formation was analysed.

Details

Soldering & Surface Mount Technology, vol. 25 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 June 2024

Fengjiang Wang, Dapeng Yang and Guoqing Yin

This paper aims to focus on the reliability of Sn15Bi–xAg and Sn15Bi–xCu solder joints during isothermal aging.

Abstract

Purpose

This paper aims to focus on the reliability of Sn15Bi–xAg and Sn15Bi–xCu solder joints during isothermal aging.

Design/methodology/approach

The effects of Ag or Cu additions on the microstructure, interfacial metallic compound layer and shear strength of Sn–15Bi (Sn15Bi) based solder joints during were investigated. The effects of Ag or Cu additions on the microstructure and tensile properties of Sn15Bi-based bulk solders were also investigated to provide a comprehensive analysis. The interfacial morphology and microstructure were observed by scanning electron microscopy and the composition in the structure was examined by energy dispersive spectrometer. The shear tests were carried out on the as-soldered and as-aged joints using a ball shear tester.

Findings

The results revealed that by adding Ag or Cu, the microstructure of Sn15Bi solder can be refined. Ag addition increased the tensile strength of Sn15Bi solder but had little effect on elongation. However, Cu addition decreased the tensile strength and elongation of Sn15Bi solder. For solder joints, Ag addition increased the shear strength and toughness of Sn15Bi/Cu joints but Cu addition decreased the shear strength and toughness of Sn15Bi/Cu joints.

Originality/value

The authors can potentially provide a replacement for Sn40Pb traditional solder with Sn15Bi solder by alloying Ag or Cu due to its lower cost and similar melting point as Sn–Pb solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 October 2020

Guang Ren and Maurice Collins

This paper aims to investigate the creep behaviour of the recently developed Sn–8Zn–3Bi–xSb (x = 0, 0.5, 1.0 and 1.5) low temperature lead-free solder alloys.

Abstract

Purpose

This paper aims to investigate the creep behaviour of the recently developed Sn–8Zn–3Bi–xSb (x = 0, 0.5, 1.0 and 1.5) low temperature lead-free solder alloys.

Design/methodology/approach

An in-house compressive test rig was developed to perform creep tests under stresses of 20–40 MPa and temperature range 25°C–75 °C. Dorn power law and Garofalo hyperbolic sine law were used to model the secondary creep rate.

Findings

High coefficient of determination R2 of 0.99 is achieved for both the models. It was found that the activation energy of Sn–8Zn–3Bi solder alloy can be significantly increased with addition of Sb, by 60% to 90 kJ/mol approximately, whereas the secondary creep exponent falls in the range 3–7. Improved creep resistance is attributed to solid solution strengthening introduced by micro-alloying. Creep mechanisms that govern the deformation of these newly developed lead-free solder alloys have also been proposed.

Originality/value

The findings are expected to fill the gap of knowledge on creep behaviour of these newly developed solder alloys, which are possible alternatives as lead-free interconnecting material in low temperature electronic assembly.

Details

Soldering & Surface Mount Technology, vol. 33 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 1995

I. Artaki, A.M. Jackson and P.T. Vianco

Fine pitch (0.4 mm) surface mount assembly studies were conducted with several lead‐free solder pastes formulated with both traditional RMA (∼6% residue level) and low residue…

Abstract

Fine pitch (0.4 mm) surface mount assembly studies were conducted with several lead‐free solder pastes formulated with both traditional RMA (∼6% residue level) and low residue (1%) flux vehicles. The lead‐free solder alloys evaluated included the two baseline eutectic binary alloys, Sn‐Bi and Sn‐Ag, and three new lead‐free solder compositions: (1)91.8Sn–4.8Bi–3.4Ag (wt%) developed at Sandia Laboratories, (2) 77.2Sn–20ln–2.8Ag (Indalloy 227) developed at Indium Corporation of America and (3) 96.2Sn–2.5Ag–0.8Cu–0.5Sb (Castin) provided by AIM, Inc. The basic physical properties pertinent to assembly performance (melting temperature and wetting behaviour) were determined for each of the new alloys. Assembly performance was assessed as a function of circuit board surface finishes, thermal reflow profiles and solder paste flux composition. The feasibility of 0.4 mm pitch assembly was established with each of the lead‐free solder alloys investigated. No issues particular to the combined use of low residue flux vehicles and lead‐free solder powders were identified. The circuit board laminates did not suffer any thermal degradation effects (reflow was performed in an inert atmosphere). All lead‐free solders, compared with the Sn‐Pb eutectic solder, exhibited reduced spreading on the circuit board lands after reflow. It was concluded that the performance of the new solder formulations is adequate for surface mount applications. Further differentiation among these solders will have to be based on their long‐term reliability performance. These studies are currently under way.

Details

Soldering & Surface Mount Technology, vol. 7 no. 2
Type: Research Article
ISSN: 0954-0911

1 – 10 of 31