Search results

1 – 10 of over 28000
Article
Publication date: 19 September 2008

Jin Gang Gao, Yi Ping Wu, Han Ding and Nian Hong Wan

This paper aims to offer a convenient method to develop an oven recipe for a specific soldering profile in a reflow process. The method is devised to quickly achieve proper…

Abstract

Purpose

This paper aims to offer a convenient method to develop an oven recipe for a specific soldering profile in a reflow process. The method is devised to quickly achieve proper profile shape and heating factor Qη, a measure of success for high reliability of the solder joints reflowed.

Design/methodology/approach

An in‐depth analysis of the heating mechanism and some experiments of the reflow soldering process are performed to research on how to realize a specific shape reflow profile were conducted.

Findings

Heating mechanism analysis and experiments demonstrate that the combinatorial parameters based method is feasible to do thermal profiling.

Research limitations/implications

The mapping function among a particular configured PCBA, an oven used, a target reflow profile and an optimal range of the heating factor should be further established for fast and reliable production of reflow soldering.

Practical implications

Provides a methodology for designing an oven recipe for reflow soldering production.

Originality/value

An oven recipe can be quickly attained with the approach established in this paper, facilitating the formation of solder joints with high reliability during the reflow soldering process.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 2016

Attila Géczy, Bíborka Kvanduk, Balazs Illes and Gábor Harsányi

The paper aims to present a comparative study of various thermocouple (TC) attaching methods for the proper measurement of soldering temperature profiling during vapour phase…

Abstract

Purpose

The paper aims to present a comparative study of various thermocouple (TC) attaching methods for the proper measurement of soldering temperature profiling during vapour phase soldering (VPS). The heat transfer process during VPS is different from common methods, while the required heat for reflow is provided by the condensation. The condensate is a flowing layer on the board, where the dynamic behaviour also affects the local conditions on the surfaces. Temperature measurements based on TCs are also affected this way; it is important to investigate the process for deeper understanding.

Design/methodology/approach

Bare printed circuit boards (PCBs) were prepared for standard K-Type TCs attachment with industry standard materials: kapton polyimide tape, aluminium tape, SMD adhesive and high-temperature solder (HTS). Heating experiments were performed in a batch-type VPS oven with Galden LS240 fluid and fixed oven parameters.

Findings

According to the specific attachment requirements, HTS and Alu-tape are the suggested methods for better profiling reliability and repeatability. Alu-tape is the preferred all-around method, for fast, exchangeable, cheap, reliable and repeatable profiling in a VPS oven. It was presented that the heating factor (Q?) gives more reliable comparison overview; the time period-based comparisons may be affected by the thermal inertia, while heating factor also includes temperature conditions at the given time points.

Originality/value

The paper presents the reliability of the presented methods for VPS and present suggestions for the use of different TC ends and attaching materials during condensation heating of the PCBs. Also a new approach on profiling data evaluation based on the heating factor is presented and suggested for wider use.

Details

Soldering & Surface Mount Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 May 1954

W.H. Horton

This paper reviews and compares the methods of kinetic heat simulation which may be used simultaneously with normal loading in structural tests of aircraft or components. Basic…

Abstract

This paper reviews and compares the methods of kinetic heat simulation which may be used simultaneously with normal loading in structural tests of aircraft or components. Basic data on the quantities involved in and the limitations of the various techniques are given. An extensive bibliography of current literature on heat technology is provided.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1999

James Douglas

Summarises the evolution of underfloor heating in buildings. Examines the main types of underfloor heating systems in ground floors. Discusses the pros and cons of this method of…

1217

Abstract

Summarises the evolution of underfloor heating in buildings. Examines the main types of underfloor heating systems in ground floors. Discusses the pros and cons of this method of heating buildings. Shows that with the introduction of flow‐applied screeds and plastic piping, as well as improved installation and control procedures, underfloor heating is making a comeback in a growing number of new‐build schemes in the UK. However, this study indicates that it will be many years before universal confidence in the system is achieved.

Details

Structural Survey, vol. 17 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 March 1982

Erdener Kaynak and Lois Stevenson

The purpose of this study is to examine the salient selection criteria and purchase behaviour of Atlantic Canadians when buying a single‐detached house. It considers features of…

Abstract

The purpose of this study is to examine the salient selection criteria and purchase behaviour of Atlantic Canadians when buying a single‐detached house. It considers features of the house and economic and locational factors deemed important by consumers in making the home buying decision.

Details

Management Research News, vol. 5 no. 1
Type: Research Article
ISSN: 0140-9174

Article
Publication date: 9 January 2020

Visar Hoxha

The purpose of this study is to quantify the energy heating performance of apartment buildings in Kosovo built after 2003 and compare it against the energy heating performance of…

Abstract

Purpose

The purpose of this study is to quantify the energy heating performance of apartment buildings in Kosovo built after 2003 and compare it against the energy heating performance of buildings in member states of EU and selected European countries.

Design/methodology/approach

This paper takes a case study approach focussed on the assessment of the heating energy performance of the building. This approach facilitated a detailed calculation of the selected materials’ energy performance used in a representative building structure in Kosovo comparing with passive buildings standard and energy heating performance of buildings in member states of EU and selected European countries.

Findings

Results of quantitative research find that the energy heating performance of apartment buildings in Kosovo built after 2003 is far higher than that of passive buildings standard and is better than the average annual energy heating performance of apartment buildings in member states of the EU and selected European countries.

Research limitations/implications

The research provides new knowledge regarding energy heating performance in new residential buildings in Kosovo and compares the findings with earlier research and energy consumption in other selected European countries. The research provides great benefits for researchers and practitioners working in the field of energy management as it compares the energy performance of residential buildings across Europe.

Originality/value

This paper provides a perspective on investigating the energy performance of a building structure of a residential apartment building in Prishtina, Kosovo. By unveiling the level of energy consumption of a residential apartment building in Kosovo representative of the new construction period can help the facility managers to acknowledge the standards they must achieve to refurbish the old building stock to achieve at least the same standard as the buildings in the new construction period.

Article
Publication date: 5 October 2023

Liang Ma and Jun Li

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of…

Abstract

Purpose

The present study provides a comprehensive review of the advancements in five active heating modes for cold-proof clothing as of 2021. It aims to evaluate the current state of research for each heating mode and identify their limitations. Further, the study provides insights into the optimization of intelligent temperature control algorithms and design considerations for intelligent cold-proof clothing.

Design/methodology/approach

This article presents a classification of active heating systems based on five different heating principles: electric heating system, solar heating system, phase-change material (PCM) heating system, chemical heating system and fluid/air heating system. The systems are analyzed and evaluated in terms of heating principle, research advancement, scientific challenges and application potential in the field of cold-proof clothing.

Findings

The rational utilization of active heating modes enhances the thermal efficiency of cold-proof clothing, resulting in enhanced cold-resistance and reduced volume and weight. Despite progress in the development of the five prevalent heating modes, particularly with regard to the improvement and advancement of heating materials, the current integration of heating systems with cold-proof clothing is limited to the torso and limbs, lacking consideration of the thermal physiological requirements of the human body. Additionally, the heating modes of each system tend to be uniform and lack differentiation to meet the varying cold protection needs of various body parts.

Research limitations/implications

The effective application of multiple heating modes helps the human body to maintain a constant body temperature and thermal equilibrium in a cold environment. The research of heating mode is the basis for realizing the temperature control of cold-proof clothing and provides an effective guarantee for the future development of the intelligent algorithms for temperature control of non-uniform heating of body segments.

Practical implications

The integration of multiple heating modes ensures the maintenance of a constant body temperature and thermal balance for the wearer in cold environments. The research of heating modes forms the foundation for the temperature regulation of cold-proof clothing and lays the groundwork for the development of intelligent algorithms for non-uniform heating control of different body segments.

Originality/value

The present article systematically reviews five active heating modes suitable for use in cold-proof clothing and offers guidance for the selection of heating systems in future smart cold-proof clothing. Furthermore, the findings of this research provide a basis for future research on non-uniform heating modes that are aligned with the thermal physiological needs of the human body, thus contributing to the development of cold-proof clothing that is better suited to meet the thermal needs of the human body.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 April 2016

Chun Sean Lau, C.Y. Khor, D. Soares, J.C. Teixeira and M.Z. Abdullah

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review…

1038

Abstract

Purpose

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed.

Design/methodology/approach

Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process.

Findings

With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed.

Practical implications

This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process.

Originality/value

The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 1992

KAMEL M. AL‐KHALIL, THEO G. JR. KEITH and KENNETH J. DE WITT

A numerical solution for ‘running wet’ aircraft anti‐icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into…

Abstract

A numerical solution for ‘running wet’ aircraft anti‐icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modelled as a multi‐layer structure and the anti‐icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded within the layers. Details of the calculation procedure and the methods used are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 July 2013

Chun‐Sean Lau, M.Z. Abdullah and C.Y. Khor

Reflow soldering is one of the most significant factors in determining solder joint defect rate. This study aims to introduce an innovative approach for optimizing the multiple…

Abstract

Purpose

Reflow soldering is one of the most significant factors in determining solder joint defect rate. This study aims to introduce an innovative approach for optimizing the multiple performances of the reflow soldering process.

Design/methodology/approach

This study aims to minimize the solder joint defect rate of a ball grid array (BGA) package by using the grey‐based Taguchi method. The entropy measurement method was employed together with the grey‐based Taguchi method to compute for the weights of each quality characteristic. The Taguchi L18 orthogonal array was performed, and the optimal parameter settings were determined. Various factors, such as slope, temperature, and reflow profile time, as well as two extreme noise factors, were considered. The thermal stress, peak temperature, reflow time, board‐ and package‐level temperature uniformity were selected as the quality characteristics. These quality characteristics were determined using the numerical method. The numerical method comprises the internal computational flow that models the reflow oven coupled with the structural heating and cooling models of the BGA assembly. The Multi‐physics Code Coupling Interface was used as the coupling software.

Findings

The analysis of variance results reveals that the cooling slope was the most influential factor among the multiple quality characteristics, followed by the soaking temperature and the peak temperature. Experimental confirmation test results show that the performance characteristics improved significantly during the reflow soldering process.

Practical implications

The proposed approach greatly reduces solder joint defects and enhances solutions to lead‐free reliability issues in the electronics manufacturing industry.

Originality/value

The findings provide new guidelines to the optimization method which are very useful for the accurate control of the solder joint defect rate within components and printed circuit board (PCB) which is one of the major requirements to achieve high reliability of electronic assemblies.

1 – 10 of over 28000