Search results

1 – 10 of over 5000
Article
Publication date: 28 October 2014

Amit K. Chauhan, B.V.S.S.S. Prasad and B.S.V. Patnaik

The purpose of this paper is to investigate the effect of narrow gap on the fluid flow and heat transfer through an eccentric annular region is numerically. Flow through an…

399

Abstract

Purpose

The purpose of this paper is to investigate the effect of narrow gap on the fluid flow and heat transfer through an eccentric annular region is numerically. Flow through an eccentric annular geometry is a model problem of practical interest.

Design/methodology/approach

The approach involves standard finite volume-based SIMPLE scheme. The numerical simulations cover the practically relevant Reynolds number range of 104-106.

Findings

In the narrow gap region, temperature shoot up was observed due to flow maldistribution with an attendant reduction in the heat removal from the wall surfaces. CFD analysis is presented with the aid of, streamlines, isotherms, axial velocity contours, etc. The engineering parameters of interest such as, Nusselt number, wall shear stress, etc., is presented to study the effect of eccentricity and radius ratio.

Research limitations/implications

The present investigation is a simplified model for the rod bundle heat transfer studies. However, the detailed study of sectorial mass flux distribution is a useful precursor to the thermal hydraulics of rod bundles.

Practical implications

For nuclear reactor fuel rods, the effect of eccentricity is going to be detrimental and might lead to the condition of critical heat flux. A thorough sub-channel analysis is very useful.

Social implications

Nuclear safety standards require answers to a wide a range of what-if type hypothetical scenarios to enable preparedness. This study is a highly simplified model and a first step in that direction.

Originality/value

The narrow gap region has been systematically investigated for the first time. A detailed sectorial analysis reveals that, flow maldistribution and the attendant temperature shoot up in the narrow gap region is detrimental to the safe operation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Dandan Qiu, Lei Luo, Songtao Wang, Bengt Ake Sunden and Xinhong Zhang

This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet…

Abstract

Purpose

This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet impinging on a confined concave target surface at constant jet to target spacing.

Design/methodology/approach

Numerical simulations are used in this research. Jet to target spacing, H/B is varying from 1.0 to 2.2, B is the slot width. The jet Reynolds number, Rej, varies from 8,000 to 40,000, and the surface curvature, R2/B, varies from 4 to 20. Results of the target surface heat transfer, flow parameters and fluid flow in the concave channel are performed.

Findings

It is found that an obvious backflow occurs near the upper wall. Both the local and averaged Nusselt numbers considered in the defined region respond positively to the Rej. The surface curvature plays a positive role in increasing the averaged Nusselt number for smaller surface curvature (4-15) but affects little as the surface curvature is large enough (> 15). The thermal performance is larger for smaller surface curvature and changes little as the surface curvature is larger than 15. The jet to target spacing shows a negative effect in heat transfer enhancement and thermal performance.

Originality/value

The surface curvature effects are conducted by verifying the concave surface with constant jet size. The flow characteristics are first obtained for the confined impingement cases. Then confined and unconfined slot jet impingements are compared. An ineffective point for surface curvature effects on heat transfer and thermal performance is obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2023

Nikesh Chowrasia, Subramani S.N., Harish Pothukuchi and B.S.V. Patnaik

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase…

Abstract

Purpose

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase significantly enhances the heat transfer coefficient due to latent heat of vaporization, eventually the formed vapor bubbles may coalesce and deteriorate the heat transfer from the heated wall to the liquid phase. Due to the poor heat transfer characteristics of the vapour phase, the heat transfer rate drastically reduces when it reaches a specific value of wall heat flux. Such a threshold value is identified as critical heat flux (CHF), and the phenomenon is known as departure from nucleate boiling (DNB). An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Therefore, the present study aims at the prediction of DNB type CHF in a hexagonal sub-assembly.

Design/methodology/approach

Computational fluid dynamics (CFD) simulations are performed to predict DNB in a hexagonal sub-assembly. The methodology uses an Eulerian–Eulerian multiphase flow (EEMF) model in conjunction with multiple size group (MuSiG) model. The breakup and coalescence of vapour bubbles are accounted using a population balance approach.

Findings

Bubble departure diameter parameters in EEMF framework are recalibrated to simulate the near atmospheric pressure conditions. The predictions from the modified correlation for bubble departure diameter are found to be in good agreement against the experimental data. The simulations are further extended to investigate the influence of blockage (b) on DNB type CHF at low operating pressure conditions. Larger size vapour bubbles are observed to move away from the corner sub-channel region due to the presence of blockage. Corner sub-channels were found to be more prone to experience DNB type CHF compared to the interior and edge sub-channels.

Practical implications

An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Moreover, a wide spectrum of heat transfer equipment of engineering interest will be benefited by an accurate prediction of wall characteristics using breakup and coalescence-based models as described in the present study.

Originality/value

Simulations are performed to predict DNB type CHF. The EEMF and wall heat flux partition model framework coupled with the MuSiG model is novel, and a detailed variation of the coolant velocity, temperature and vapour volume fraction in a hexagonal sub-assembly was obtained. The present CFD model framework was observed to predict the onset of vapour volume fraction and DNB type CHF. Simulations are further extended to predict CHF in a hexagonal sub-assembly under the influence of blockage. For all the values of blockage, the vapour volume fraction is found to be higher in the corner region, and thus the corner sub-channel experiences CHF. Although DNB type CHF is observed in corner sub-channel, it is noticed that the presence of blockage in the interior sub-channel promotes the coolant mixing and results in higher values of CHF in the corner sub-channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2020

Alankrita Singh, Balaji Chakravarthy and BVSSS Prasad

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate…

Abstract

Purpose

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface.

Design/methodology/approach

The scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, dp, Re, θ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model.

Findings

A single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy.

Originality/value

The heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 16 October 2023

Karen Perham-Lippman, Yolanda Caldwell and Tissa Richards

Leadership diversity promotes inclusive decision-making, innovation, and sustainable performance. This chapter examines the relationship between corporate board diversity and…

Abstract

Leadership diversity promotes inclusive decision-making, innovation, and sustainable performance. This chapter examines the relationship between corporate board diversity and social criteria under the environmental, social, and governance (ESG) framework, emphasizing gender parity on boards. ESG data are linked to one-fourth of the world’s professionally managed assets, worth $20 trillion (Eccles et al., 2019). Despite progress, less than 20% of corporate boards worldwide include women (Deloitte, 2021). Social psychology’s conformity theory describes how group dynamics affect individual behavior. Minority views are not easily expressed or heard in groups as social constraints favor conformity with the majority’s viewpoint (Asch, 1955; Glass & Cook, 2017; Yarram & Adapa, 2021). When a group encounters persistent minority viewpoints from multiple individuals, it is more likely to consider and learn from the minority voice (Asch, 1955). Decision-making and problem-solving increase when a board has diverse perspectives and critical mass can contribute to normalizing diversity on boards removing communication impediments. In the context of corporate board diversity, this theory can be applied to address diversity challenges, improving decision-making and problem-solving. To promote board diversity and inclusion, we developed BOARDS, a six-step process to assist current boards on increasing their capacity for inclusion. Our four-step process SKIM can be used to prepare potential board members for future opportunities. This chapter underlines the necessity to eliminate diversity gaps on corporate boards to develop a sustainable model of social equality to build inclusive corporate boards. Future research should consider other diversity variables including age, sexual orientation, and cultural and language diversity.

Details

Inclusive Leadership: Equity and Belonging in Our Communities
Type: Book
ISBN: 978-1-83797-438-2

Keywords

Article
Publication date: 24 October 2018

Sai Nikhil Subraveti, V. Vinod Kumar, Harish Pothukuchi, P.S.T. Sai and B.S.V. Patnaik

Better membrane oxygenators need to be developed to enable efficient gas exchange between venous blood and air.

Abstract

Purpose

Better membrane oxygenators need to be developed to enable efficient gas exchange between venous blood and air.

Design/methodology/approach

Optimal design and analysis of such devices are achieved through mathematical modeling tools such as computational fluid dynamics (CFD). In this study, a control volume-based one-dimensional (1D) sub-channel analysis code is developed to analyze the gas exchange between the hollow fiber bundle and the venous blood. DIANA computer code, which is popular with the thermal hydraulic analysis of sub-channels in nuclear reactors, was suitably modified to solve the conservation equations for the blood oxygenators. The gas exchange between the tube-side fluid and the shell-side venous blood is modeled by solving mass, momentum and species conservation equations.

Findings

Simulations using sub-channel analysis are performed for the first time. As the DIANA-based approach is well known in rod bundle heat transfer, it is applied to membrane oxygenators. After detailed validations, the artificial membrane oxygenator is analyzed for different bundle sizes (L/W) and bundle porosity (epsilon) values, and oxygen saturation levels are predicted along the bundle. The present sub-channel analysis is found to be reasonably accurate and computationally efficient when compared to conventional CFD calculations.

Research limitations/implications

This approach is promising and has far-reaching ramifications to connect and extend a well-known rod bundle heat transfer algorithm to a membrane oxygenator community. As a variety of devices need to be analyzed, simplified approaches will be attractive. Although the 1D nature of the simulations facilitates handling complexity, it cannot easily compete with expensive and detailed CFD calculations.

Practical implications

This work has high practical value and impacts the design community directly. Detailed numerical simulations can be validated and benchmarked for future membrane oxygenator designs.

Social implications

Future membrane oxygenators can be designed and analyzed easily and efficiently.

Originality/value

The DIANA algorithm is popularly used in sub-channel analysis codes in rod bundle heat transfer. This efficient approach is being implemented into membrane oxygenator community for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2019

Tomasz Sobota

The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures…

Abstract

Purpose

The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures. This paper aims to present a method of simultaneous determination of coefficients in correlation formulas for the Nusselt number on both sides of the heat transfer surface.

Design/methodology/approach

The idea of the developed method is based on determining such a values of the coefficients in Nusselt number correlations that fulfill the condition of equality between the measured and calculated temperature at the outlet of heat exchanger in terms of least squares method. To test the proposed method, a special experimental installation was built. The heat transfer in helically coiled tube-in-tube heat exchanger was examined for the wide range of temperature changes and volumetric flow rates of working fluid.

Findings

The simulation results were validated with an experimental data. The results show that the heat transfer coefficient of the counter-current is higher than the co-current flow in helically coiled heat exchanger. This phenomenon can be beneficial particularly in the laminar flow regime.

Research limitations/implications

The correlation for the Nusselt number as a function of the Reynolds and Prandtl numbers for hot and cold liquid was obtained with the least squares method for the experimental data.

Practical implications

The presented method allows for the simultaneous determination of heat transfer coefficient on both sides of the wall without the necessity of indirect calculation of the overall heat transfer coefficient. The presented method can be used in the thermal design of various type heat exchangers.

Originality/value

This work presents the new methodology of determination correlations for the helically coiled tube-in-tube heat exchanger for co-current and counter-current arrangement, which can be used in thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1097

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2022

Srinivas M.V.V., Mudragada Hari Surya, Devendra Pratap Singh, Pratibha Biswal and Sathi Rajesh Reddy

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water…

Abstract

Purpose

The purpose of this study is to explore the mist-air film cooling performance on a three-dimensional (3-D) flat plate. In mist-air film cooling technique, a small amount of water droplets is injected along with the coolant air. The objective is to study the influence of shape of the coolant hole and operating conditions on the cooling effectiveness.

Design/methodology/approach

In this study, 3-D numerical simulations are performed. To simulate the mist-air film cooling over a flat plate, air is considered as a continuous phase and mist is considered as a discrete phase. Turbulence in the flow is accounted using Reynolds averaged Navier–Stokes equation and is modeled using k–e model with enhanced wall treatment.

Findings

The results of this study show that, for cylindrical coolant hole, coolant with 5% mist concentration is not effective for mainstream temperatures above 600 K, whereas for fan-shaped hole, even 2% mist concentration has shown significant impact on cooling effectiveness for temperatures up to 1,000 K. For given mist-air coolant flow conditions, different trend in effectiveness is observed for cylindrical and fan-shaped coolant hole with respect to main stream temperature.

Research limitations/implications

This study is limited to a flat plate geometry with single coolant hole.

Practical implications

The motivation of this study comes from the requirement of high efficiency cooling techniques for cooling of gas turbine blades. This study aims to study the performance of mist-air film cooling at different geometric and operating conditions.

Originality/value

The originality of this study lies in studying the effect of parameters such as mist concentration, droplet size and blowing ratio on cooling performance, particularly at high mainstream temperatures. In addition, a systematic performance comparison is presented between the cylindrical and fan-shaped cooling hole geometries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2018

Ranganayakulu Chennu

The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of…

Abstract

Purpose

The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of various types of heat transfer surfaces such as offset strip fins, wavy fins, rectangular fins, triangular fins, triangular and rectangular perforated fins in terms of Colburn “j” and Fanning friction “f” factors.

Design/methodology/approach

Numerical methods play a major role for analysis of compact plate-fin heat exchangers, which are cost-effective and fast. This paper presents the on-going research and work carried out earlier for single-phase steady-state heat transfer and pressure drop analysis on CHE passages and fins. An analysis of a cross-flow plate-fin compact heat exchanger, accounting for the individual effects of two-dimensional longitudinal heat conduction through the exchanger wall, inlet fluid flow maldistribution and inlet temperature non-uniformity are carried out using a Finite Element Method (FEM).

Findings

The performance deterioration of high-efficiency cross-flow plate-fin compact heat exchangers have been reviewed with the combined effects of wall longitudinal heat conduction and inlet fluid flow/temperature non-uniformity using a dedicated FEM analysis. It is found that the performance deterioration is quite significant in some typical applications due to the effects of wall longitudinal heat conduction and inlet fluid flow non-uniformity on cross-flow plate-fin heat exchangers. A Computational Fluid Dynamics (CFD) program FLUENT has been used to predict the design data in terms of “j” and “f” factors for plate-fin heat exchanger fins. The suitable design data are generated using CFD analysis covering the laminar, transition and turbulent flow regimes for various types of fins.

Originality/value

The correlations for the friction factor “f” and Colburn factor “j” have been found to be good. The correlations can be used by the heat exchanger designers and can reduce the number of tests and modification of the prototype to a minimum for similar applications and types of fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000