Search results

1 – 10 of over 1000
Article
Publication date: 1 July 2014

Dongliang Sun, Jinliang Xu and Peng Ding

Based on the numerical research on the relationship between the flow pattern transition and the condensation heat transfer in circular microchannels, the purpose of this paper is…

Abstract

Purpose

Based on the numerical research on the relationship between the flow pattern transition and the condensation heat transfer in circular microchannels, the purpose of this paper is to bring forward a concept of external separation circular microchannel to regulate and control the flow pattern for enhancing the condensation heat transfer.

Design/methodology/approach

The numerical research is based on the volume of fluid method and the vapor-liquid phase change model proposed by the present authors.

Findings

By numerical research on the condensation process of water in a general circular microchannel, it is discovered that, with the increase of the inlet velocity and the reduction of the temperature difference between the saturation temperature and the channel wall temperature, the bubble detachment frequency is raised and the water vapor condensation length is extended, representing an exponential growth. Therefore, for the condensation process with low temperature difference and high mass flow rate, it is in urgent need to regulate and control the flow pattern.

Originality/value

To prevent the flow pattern in the general circular microchannel converted from annular flow to slug flow and then to bubble flow, this paper brings forward a concept of external separation circular microchannel, which regulates and controls the flow pattern by discharging partial liquid from the annular wall opening. After regulation and control, the flow pattern is converted from original periodic annular flow/slug flow/bubble flow to current stable annular flow. Accordingly, the heat transfer performance is enhanced and the condensation length is lowered remarkably.

Details

Engineering Computations, vol. 31 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2005

M.R. Ahmed and S.D. Sharma

Turbulent mixing of two co‐axial jets having a low annular to core area ratio is enhanced by employing a chute mixer, directing part of the annular stream at 10° towards the core…

Abstract

Purpose

Turbulent mixing of two co‐axial jets having a low annular to core area ratio is enhanced by employing a chute mixer, directing part of the annular stream at 10° towards the core region. Aims to present results from measurements of time‐averaged and fluctuating components of velocity under cold flow conditions.

Design/methodology/approach

Experiments were conducted at a bypass ratio of 0.47 which is a typical value for low bypass turbofan engines. Contours of time‐averaged velocity and streamwise and transverse turbulence intensities were obtained by making detailed measurements close to the chutes. Distributions of time‐averaged velocity and turbulence intensity were obtained at different axial locations downstream of the chute mixer. Total and static pressure measurements were also performed.

Findings

The high velocity annular stream was found to quickly diffuse after entering through the chutes and mix with the core stream due to high turbulence generation. A strong transverse turbulence component enhanced the mixing of the streams. With the aid of the chute mixer, nearly complete mixing is achieved over a length of 5 duct radii. A higher total pressure loss of about 1.38 percent is the penalty paid for the enhanced mixing.

Originality/value

Provides results from experiments into the process of turbulent mixing of co‐axial jets.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 28 October 2014

Amit K. Chauhan, B.V.S.S.S. Prasad and B.S.V. Patnaik

The purpose of this paper is to investigate the effect of narrow gap on the fluid flow and heat transfer through an eccentric annular region is numerically. Flow through an…

399

Abstract

Purpose

The purpose of this paper is to investigate the effect of narrow gap on the fluid flow and heat transfer through an eccentric annular region is numerically. Flow through an eccentric annular geometry is a model problem of practical interest.

Design/methodology/approach

The approach involves standard finite volume-based SIMPLE scheme. The numerical simulations cover the practically relevant Reynolds number range of 104-106.

Findings

In the narrow gap region, temperature shoot up was observed due to flow maldistribution with an attendant reduction in the heat removal from the wall surfaces. CFD analysis is presented with the aid of, streamlines, isotherms, axial velocity contours, etc. The engineering parameters of interest such as, Nusselt number, wall shear stress, etc., is presented to study the effect of eccentricity and radius ratio.

Research limitations/implications

The present investigation is a simplified model for the rod bundle heat transfer studies. However, the detailed study of sectorial mass flux distribution is a useful precursor to the thermal hydraulics of rod bundles.

Practical implications

For nuclear reactor fuel rods, the effect of eccentricity is going to be detrimental and might lead to the condition of critical heat flux. A thorough sub-channel analysis is very useful.

Social implications

Nuclear safety standards require answers to a wide a range of what-if type hypothetical scenarios to enable preparedness. This study is a highly simplified model and a first step in that direction.

Originality/value

The narrow gap region has been systematically investigated for the first time. A detailed sectorial analysis reveals that, flow maldistribution and the attendant temperature shoot up in the narrow gap region is detrimental to the safe operation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 August 2021

Liangjie Mao, Mingjie Cai, Qingyou Liu and Ying Zhang

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Abstract

Purpose

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Design/methodology/approach

In this paper, a multi-phase flow model considering the endothermic decomposition of hydrate is established and finite difference method is used to solve the mathematical model. The model is validated by reproducing the field test data of a well in Shenhu Sea area. Besides, optimization of design parameters is presented to ensure engineering safety during the solid fluidization exploitation of NGH in South China Sea.

Findings

To ensure the engineering safety during solid fluidization exploitation of marine NGH, taking the test well as an example, a drilling flow rate range of 40–50 L/s, drilling fluid density range of 1.2–1.23 g/cm3 and rate of penetration (ROP) range of 10–20 m/h should be recommended. Besides, pre-cooled drilling fluid is also helpful for inhibiting hydrate decomposition.

Originality/value

Systematic research on the effect of multiphase flow behaviors on the engineering safety is scare, especially for the solid fluidization exploitation of NGH in South China Sea. With the growing demand for energy, it is of great significance to ensure the engineering safety before the large-scale extraction of commercial gas from hydrate deposits. The result of this study can provide profound theoretical bases and valuable technical guidance for the commercial solid fluidization exploitation of NGH in South China Sea.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 December 2023

Umair Khan, William Pao, Karl Ezra Salgado Pilario, Nabihah Sallih and Muhammad Rehan Khan

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime…

70

Abstract

Purpose

Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification.

Design/methodology/approach

A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable.

Findings

The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features.

Practical implications

This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries.

Originality/value

This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2006

O.M. Haddad and M.Q. Al‐Odat

This study seeks to focus on the annular flow between rectangular and equilateral‐triangular ducts under all possible arrangements. The aim of this work is to obtain accurate…

Abstract

Purpose

This study seeks to focus on the annular flow between rectangular and equilateral‐triangular ducts under all possible arrangements. The aim of this work is to obtain accurate prediction of the friction factor of this flow using high‐order finite element method.

Design/methodology/approach

Steady and fully developed laminar flow of incompressible Newtonian fluid in an annulus of variable cross‐sectional geometry is investigated numerically. Accurate prediction of the friction factor of this flow was obtained using high‐order finite element method.

Findings

The results were in agreement with already published findings in the literature. It was found that a higher annular area ratio will lead to a monotonic increase in fRe value in the case of regular annuli, and will lead to an increase followed by a decrease in fRe value in the case of irregular annuli. Also, it was, found that irregular annuli have lower fRe value than regular annuli, and that the square‐in‐triangle case has the lowest fRe value, whereas the square‐in‐square case has the highest fRe value.

Originality/value

Accurate prediction of the friction factor of the laminar flow in irregular annuli was obtained. Also, the obtained results can be utilized to optimize the annular geometries under consideration. In addition, the obtained results can lead to the design of more efficient heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2005

Esmail M.A. Mokheimer and Maged El‐Shaarawi

Obtaining the maximum possible flow rates that can be induced by free convection in open‐ended vertical eccentric annuli under fundamental thermal boundary conditions of the…

Abstract

Purpose

Obtaining the maximum possible flow rates that can be induced by free convection in open‐ended vertical eccentric annuli under fundamental thermal boundary conditions of the fourth kind (heating or cooling one of the annulus walls with a uniform heat flux while keeping the other wall at ambient temperature). Obtaining the maximum possible flow rates that can be induced by free convection in open‐ended vertical eccentric annuli under fundamental thermal boundary conditions of the fourth kind (heating or cooling one of the annulus walls with a uniform heat flux while keeping the other wall at ambient temperature).

Design/methodology/approach

The fully‐developed laminar free convection momentum equation has been solved numerically using an analytical solution of the governing energy equation.

Findings

Results are presented to show the effect of the annulus radius ratio and the dimensionless eccentricity on the induced flow rate, the total heat absorbed by the fluid, and the fully developed Nusselt numbers on the two boundaries of the annulus for a fluid of Prandtl number 0.7.

Practical implications

Applications of the obtained results can be of value in the heat‐exchanger industry, in cooling of underground electric cables, and in cooling small vertical electric motors and generators.

Originality/value

The paper presents a solution that is not available in the literature for the problem of fully developed free convection in open‐ended vertical eccentric annular channels under thermal boundary conditions of the fourth kind. Also presents the maximum possible induced flow rates, the total heat absorbed by the fluid, and the Nusselt numbers on the two boundaries of the annulus. The effects of N and E (the radius ratio and eccentricity, respectively) on these results are presented. Such results are very much needed for design purposes of heat transfer equipment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

Mourad Moderres, Said Abboudi, Malika Ihdene, Sofiane Aberkane and Abderahmane Ghezal

Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this…

Abstract

Purpose

Double-diffusive convection within a tri-dimensional in a horizontal annulus partially filled with a fluid-saturated porous medium is numerically investigated. The aim of this work is to understand the effects of a source of heat and solute on the fluid flow and heat and mass transfer rates.

Design/methodology/approach

In the formulation of the problem, the Darcy–Brinkman–Forchheimer model is adopted to the fluid flow in the porous annulus. The laminar flow regime is considered under steady state conditions. Moreover, the transport equation for continuity, momentum, energy and mass transfer are solved using the Patankar–Spalding technique.

Findings

Through this investigation, the predicted results for both average Nusselt and Sherwood numbers were correlated in terms of Lewis number, thermal Grashof number and buoyancy ration. A comparison was made with the published results and a good agreement was found.

Originality/value

The paper’s results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical forms and discussed. This paper aims to study the behavior of the flow structure and heat transfer and mass for different parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2000

Shuichi Torii and Wen‐Jei Yang

A theoretical study is performed to investigate transport phenomena in channel flows under uniform heating from either both side walls or a single side. The anisotropic t− εt

Abstract

A theoretical study is performed to investigate transport phenomena in channel flows under uniform heating from either both side walls or a single side. The anisotropic t− εt heat‐transfer model is employed to determine thermal eddy diffusivity. The governing boundary‐layer equations are discretized by means of a control volume finite‐difference technique and numerically solved using a marching procedure. It is found that under strong heating from both walls, laminarization occurs as in the circular tube flow case; during the laminarization process, both the velocity and temperature gradients in the vicinity of the heated walls decrease along the flow, resulting in a substantial attenuation in both the turbulent kinetic energy and the temperature variance over the entire channel cross section; both decrease causes a deterioration in heat transfer performance; and in contrast, laminarization is suppressed in the presence of one‐side‐heating, because turbulent kinetic energy is produced in the vicinity of the other insulated wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2005

Pradeep Hegde, K.N. Seetharamu, G.A. Quadir, P.A. Aswathanarayana, M.Z. Abdullah and Z.A. Zainal

To analyze two‐phase flow in micro‐channel heat exchangers used for high flux micro‐electronics cooling and to obtain performance parameters such as thermal resistance, pressure…

1234

Abstract

Purpose

To analyze two‐phase flow in micro‐channel heat exchangers used for high flux micro‐electronics cooling and to obtain performance parameters such as thermal resistance, pressure drop, etc. Both uniform and non‐uniform micro‐channel base heat fluxes are considered.

Design/methodology/approach

Energy balance equations are developed for two‐phase flow in micro‐channels and are solved using the finite element method (FEM). A unique ten noded element is used for the channel descritization. The formulation also automatically takes care of single‐phase flow in the micro‐channel.

Findings

Micro‐channel wall temperature distribution, thermal resistance and the pressure drop for various uniform micro‐channel base heat fluxes are obtained, both for single‐ and two‐phase flows in the micro‐channel. Results are compared against data available in the literature. The wall temperature distribution for a particular case of non‐uniform base heat flux is also obtained.

Research limitations/implications

The analysis is done for a single micro‐channel and the effects of multiple or stacked channels are not considered. The analysis needs to be carried out for higher heat fluxes and the validity of the correlation needs to be ascertained through experimentation. Effects of flow mal‐distribution in multiple channels, etc. need to be considered.

Practical implications

The role of two‐phase flow in micro‐channels for high flux micro‐electronics cooling in reducing the thermal resistance is demonstrated. The formulation is very useful for the thermal design and management of microchannels with both single‐ and two‐phase flows for either uniform or non‐uniform base heat flux.

Originality/value

A simple approach to accurately determine the thermal resistance in micro‐channels with two‐phase flow, for both uniform and non‐uniform base heat fluxes is the originality of the paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000