Search results

1 – 10 of 913
Open Access
Article
Publication date: 10 June 2024

Julian N. Marewski, Konstantinos V. Katsikopoulos and Simone Guercini

Are there smart ways to find heuristics? What are the common principles behind heuristics? We propose an integrative definition of heuristics, based on insights that apply to all…

Abstract

Purpose

Are there smart ways to find heuristics? What are the common principles behind heuristics? We propose an integrative definition of heuristics, based on insights that apply to all heuristics, and put forward meta-heuristics for discovering heuristics.

Design/methodology/approach

We employ Herbert Simon’s metaphor that human behavior is shaped by the scissors of the mind and its environment. We present heuristics from different domains and multiple sources, including scholarly literature, practitioner-reports and ancient texts.

Findings

Heuristics are simple, actionable principles for behavior that can take different forms, including that of computational algorithms and qualitative rules-of-thumb, cast into proverbs or folk-wisdom. We introduce heuristics for tasks ranging from management to writing and warfare. We report 13 meta-heuristics for discovering new heuristics and identify four principles behind them and all other heuristics: Those principles concern the (1) plurality, (2) correspondence, (3) connectedness of heuristics and environments and (4) the interdisciplinary nature of the scissors’ blades with respect to research fields and methodology.

Originality/value

We take a fresh look at Simon’s scissors-metaphor and employ it to derive an integrative perspective that includes a study of meta-heuristics.

Details

Management Decision, vol. 62 no. 13
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 30 July 2024

Mohamed Kezzar, Nabil Talbi, Saeed Dinarvand, Sanatan Das, Mohamed Rafik Sari, Samia Nasr and Ali Akhlaghi Mozaffar

This paper aims to model and analyze Jeffery Hamel’s channel flow with the magnetohydrodynamics second-grade hybrid nanofluid. Considering the importance of studying the velocity…

Abstract

Purpose

This paper aims to model and analyze Jeffery Hamel’s channel flow with the magnetohydrodynamics second-grade hybrid nanofluid. Considering the importance of studying the velocity slip and temperature jump in the boundary conditions of the flow, which leads to results close to reality, this paper intends to analyze the mentioned topic in the convergent and divergent channels that have significant applications.

Design/methodology/approach

The examination is conducted on a EG-H_2 O <30%–70%> base fluid that contains hybrid nanoparticles (i.e. SWCNT-MWCNT). To ensure comprehensive results, this study also considers the effects of thermal radiation, thermal sink/source, rotating convergent-divergent channels and magnetic fields. Initially, the governing equations are formulated in cylindrical coordinates and then simplified to ordinary differential equations through appropriate transformations. These equations are solved using the Explicit Runge–Kutta numerical method, and the results are compared with previous studies for validation.

Findings

After the validation, the effect of the governing parameters on the temperature and velocity of the second-grade hybrid nanofluid has been investigated by means of various and comprehensive contours. In the following, the issue of entropy generation and its related graphical results for this problem is presented. The mentioned contours and graphs accurately display the influence of problem parameters, including velocity slip and temperature jump. Besides, when thermal radiation is introduced (Rd = +0.1 and Rd = +0.2), entropy generation in convergent-divergent channels decreases by 7% and 14%, respectively, compared to conditions without thermal radiation (Rd = 0). Conversely, increasing the thermal sink/source from 0 to 4 leads to an 8% increase in entropy generation at Q = 2 and a 17% increase at Q = 4 in both types of channels. The details of the analysis of contours and the entropy generation results are fully mentioned in the body of the paper.

Originality/value

There are many studies on convergent and divergent channels, but this study comprehensively investigates the effects of velocity slip and temperature jump and certainly, this geometry with the specifications presented in this paper has not been explored before. Among the other distinctive features of this paper compared to previous works, the authors can mention the presentation of velocity and temperature results in the form of contours, which makes the physical analysis of the problem simpler.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2024

Yu-Chung Tsao, Chia-Chen Liu, Pin-Ru Chen and Thuy-Linh Vu

In recent years, the demand for garments has significantly increased, requiring manufacturers to speed up their production to attract customers. Cut order planning (COP) is one of…

49

Abstract

Purpose

In recent years, the demand for garments has significantly increased, requiring manufacturers to speed up their production to attract customers. Cut order planning (COP) is one of the most important processes in the apparel manufacturing industry. The appropriate stencil arrangement can reduce costs and fabric waste. The COP problem focuses on determining the size combination for a pattern, which is determined by the length of the cutting table, width, demand order, and height of the cutting equipment.

Design/methodology/approach

This study proposes new heuristics: genetic algorithm (GA), symbiotic organism search, and divide-and-search-based Lite heuristic and a One-by-One (ObO) heuristic to address the COP problem. The objective of the COP problem is to determine the optimal combination of stencils to meet demand requirements and minimize the total fabric length.

Findings

A comparison between our proposed heuristics and other simulated annealing and GA-based heuristics, and a hybrid approach (conventional algorithm + GA) was conducted to demonstrate the effectiveness and efficiency of the proposed heuristics. The test results show that the ObO heuristic can significantly improve the solution efficiency and find the near optimal solution for extreme demands.

Originality/value

This paper proposes a new heuristic, the One-by-One (ObO) heuristic, to solve the COP problem. The results show that the proposed approaches overcome the long operation time required to determine the fitting arrangement of stencils. In particular, our proposed ObO heuristic can significantly improve the solution efficiency, i.e. finding the near optimal solution for extreme demands within a very short time.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 July 2024

A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…

Abstract

Purpose

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.

Design/methodology/approach

A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.

Findings

The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.

Originality/value

Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 25 July 2024

Ramesh Krishnan, Rohit G and P N Ram Kumar

Considering sustainability and resilience together is crucial in food supply chain (FSC) management, as it ensures a balanced approach that meets environmental, economic and…

Abstract

Considering sustainability and resilience together is crucial in food supply chain (FSC) management, as it ensures a balanced approach that meets environmental, economic and social needs while maintaining the system's capacity to withstand disruptions. Towards this, a multi-objective optimisation model is proposed in this study to create an integrated sustainable and resilient FSC. The proposed model employs four objective functions – each representing a dimension of sustainability and one for resilience and utilises an augmented ϵ-constraint method for solving. The findings highlight the interplay between sustainability aspects and resilience, illustrating that overemphasis on any single dimension can adversely affect others. Further, the proposed model is applied to the case of Indian mango pulp supply chain and several inferences are derived. The proposed model would assist decision-makers in making a well-balanced choice based on sustainability and resilience considerations.

Details

Sustainable and Resilient Supply Chain
Type: Book
ISBN: 978-1-83608-033-6

Keywords

Article
Publication date: 22 August 2024

H. Thameem Basha, Hyunju Kim and Bongsoo Jang

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or…

Abstract

Purpose

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or retrieval of energy occurs through the heating or cooling of either a liquid or a solid, without undergoing a phase change, within a sensible heat storage system. In a sensible packed bed thermal energy storage system, the structure comprises porous media that form the packed solid material, while fluid occupies the voids. Thus, a cavity, partially filled with a fluid layer and partially with a saturated porous layer, has become important in the investigation of natural convection heat transfer, carrying significant relevance within thermal energy storage systems. Motivated by these insights, the current investigation delves into the convection heat transfer driven by buoyancy and entropy generation within a partially porous cavity that is differentially heated, vertically layered and filled with a hybrid nanofluid.

Design/methodology/approach

The investigation encompasses two distinct scenarios. In the first instance, the porous layer is positioned next to the heated wall, while the opposite region consists of a fluid layer. In the second case, the layers switch places, with the fluid layer adjacent to the heated wall. The system of equations for fluid and porous media, along with appropriate initial and boundary conditions, is addressed using the finite difference method. The Tiwari–Das model is used in this investigation, and the viscosity and thermal conductivity are determined using correlations specific to spherical nanoparticles.

Findings

Comprehensive numerical simulations have been performed, considering controlling factors such as the Darcy number, nanoparticle volume fraction, Rayleigh number, bottom slit position and Hartmann number. The visual representation of the numerical findings includes streamlines, isotherms and entropy lines, as well as plots illustrating average entropy generation and the average Nusselt number. These representations aim to provide insight into the influence of these parameters across a spectrum of scenarios.

Originality/value

The computational outcomes indicate that with an increase in the Darcy number, the addition of 2.5% magnetite nanoparticles to the GO nanofluid results in an enhanced heat transfer rate, showing increases of 0.567% in Case 1 and 3.894% in Case 2. Compared with Case 2, Case 1 exhibits a 59.90% enhancement in heat transfer within the enclosure. Positioning the porous layer next to the partially cooled wall significantly boosts the average total entropy production, showing a substantial increase of 11.36% at an elevated Rayleigh number value. Positioning the hot slit near the bottom wall leads to a reduction in total entropy generation by 33.20% compared to its placement at the center and by 33.32% in comparison to its proximity to the top wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 2 October 2024

Charul Agrawal and Taranjeet Duggal

The study aims to study the extent of research done in luxury marketing in an emerging economy like India by conducting a bibliometric analysis. A period of 21 years has been…

Abstract

The study aims to study the extent of research done in luxury marketing in an emerging economy like India by conducting a bibliometric analysis. A period of 21 years has been considered to present a comprehensive picture for results and analysis. Key findings indicate the gaps and scope of further research for academics in India and abroad. The findings indicate a dearth of research by scholars and academicians in luxury, counterfeit and masstige, especially when there is a surge of the upper middle class in India. More specifically, Indian-grown luxury brands also present a massive scope for future research.

Details

Resilient Businesses for Sustainability
Type: Book
ISBN: 978-1-83608-129-6

Keywords

Article
Publication date: 15 August 2024

Mohammed Atef and Sifeng Liu

The goal of this article is to introduce the notion of a grey relation between grey sets using grey numbers.

Abstract

Purpose

The goal of this article is to introduce the notion of a grey relation between grey sets using grey numbers.

Design/methodology/approach

This study uses the grey number to create novel ideas of grey sets. We suggest several operations that can be performed on it, including the union, intersection, join, merge, and composition of grey relations. In addition, we present the definitions of reflexive, symmetric, and transitive grey relations and analyze certain characteristics associated with them. Furthermore, we formulate the concept of the grey equivalence relation, apply it to the study of the grey equivalence class over the grey relation, and go over some of its features.

Findings

We present new algebraic aspects of grey system theory by defining grey relations and then analyzing their characteristic features.

Practical implications

This paper proposes a new theoretical direction for grey sets according to grey numbers, namely, grey relations. This paper proposes a new theoretical direction for grey sets according to grey numbers, namely, grey relations. As such, it can be applied to create rough approximations as well as congruences in algebras, topologies, and semigroups.

Originality/value

The presented notions are regarded as new algebraic approaches in grey system theory for the first time. Additionally, some fundamental operations on grey relations are also investigated. Consequently, different types of grey relations, such as reflexive, symmetric, and transitive relations, are discussed. Then, the grey equivalence class derived from the grey equivalence relation is demonstrated, and its properties are examined.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Book part
Publication date: 21 June 2024

Ashley Larsen Gibby, Tiffany Fox Okeke, Nancy Luke, Melissa Alcaraz and Mikaela Dufur

Much research has explored high levels of son preference in India, finding that parents often report a desire for more sons than daughters. While scholars have noted that a…

Abstract

Much research has explored high levels of son preference in India, finding that parents often report a desire for more sons than daughters. While scholars have noted that a nontrivial portion of respondents claim to have no sex preference, little is known about (1) the characteristics of this group and (2) how such parental preferences relate to child outcomes. We use data from a representative study of rural South Indian households (n = 7,891 adults) to address these gaps. Descriptive results show that a sizable portion of respondents – one in four – indicated that, at the start of their marriage, they had no preference for the number of daughters or sons they wanted. Further, multinomial regression results show that those who reported no sex preference at the time of marriage were more likely to be female, older, and less likely to be sterilized than those who reported equal or son preference, with additional distinctions across educational attainment and religion. Turning to child-level outcomes, we examined whether parents’ sex preferences related to adolescent mental health through ordinary least squares (OLS) regression models (n = 1,245 adolescents). Adolescents whose mothers stated no sex preference reported significantly fewer anxiety and depressive symptoms than their peers. Fathers’ sex preferences were not significantly related to adolescent mental health. These findings suggest that a lack of sex preference may hold meaningful and positive implications for adolescent mental health. Further, although son preference is a widespread phenomenon, singular attention on those with son preference may mask important nuances among Indian families.

Details

Indian Families: Contemporary Family Structures and Dynamics
Type: Book
ISBN: 978-1-83797-595-2

Keywords

1 – 10 of 913