Search results

1 – 10 of 19
Article
Publication date: 5 August 2014

K. Somasundara Vinoth, R. Subramanian, S. Dharmalingam and B. Anandavel

The purpose of this research paper is to find the optimum parameters, namely, the sliding speed, applied load and percentage of silicon carbide particles (SiCp), under which…

Abstract

Purpose

The purpose of this research paper is to find the optimum parameters, namely, the sliding speed, applied load and percentage of silicon carbide particles (SiCp), under which AlSi10Mg/SiCp composites experience minimum wear.

Design/methodology/approach

Wear rate (WR) of AlSi10Mg, AlSi10Mg/10SiC and AlSi10Mg/20SiC was measured using pin-on-disk equipment according to ASTM G99 standards. Response surface method was used to design the experiments, model and analyze the tribological behaviour. Tests were conducted as per Box–Beheken design of experiments. The wear mechanisms were observed using scanning electron microscope. Genetic algorithm was used to find the optimum parameters for minimum WR.

Findings

Wear mechanisms underwent changes with variation in applied load, sliding speed and per cent SiCp. An optimum wear condition was obtained when the process parameters, namely, the sliding speed, applied load and percentage of SiCp, were at 4 m/s, 10 N and 20 per cent, respectively. Combined GA-RSM approach was successfully used to predict the minimum WR condition of AlSi10Mg/SiCp composites with an accuracy of 94 per cent.

Originality/value

The tribological behaviour of AlSi10Mg/SiCp composites has been investigated in detail. A statistical WR model is proposed. This paper provides an optimum condition to design the tribo contact between steel and AlSi10Mg/SiCp composites.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 June 2014

C. Velmurugan, R. Subramanian, S.S. Ramakrishnan, S. Thirugnanam, T. Kannan and B. Anandavel

The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight…

Abstract

Purpose

The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight per cent SiC and 2 weight per cent graphite particles.

Design/methodology/approach

The aluminum hybrid composite was produced using stir casting process. Wear testing of heat-treated samples was carried out using a pin-on-disc apparatus. Experiments were conducted by applying design of experiments (DOE) technique. The experimental values were used for formulation of a mathematical model. The wear surfaces of composite specimens were analyzed using scanning electron microscope (SEM).

Findings

The volume loss of heat-treated composite initially decreased with increasing aging duration. This was followed by the attainment of a minimum and then a reversal in the trend at longer aging times. SEM micrographs of the wear surfaces of the composite show that the wear mechanisms were abrasion, delamination and adhesion.

Originality/value

In this paper, the hybrid composite was produced using stir casting route, and its wear properties after heat treatment were tested using pin-on-disc apparatus. It was found that heat treatment had a profound effect on the wear behaviour of the developed composite.

Details

Industrial Lubrication and Tribology, vol. 66 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

C. Velmurugan, R. Subramanian, S. Thirugnanam and B. Anandavel

The purpose of this technical paper is to investigate the friction and wear behaviour of heat treated Al 6061 alloy and Al 6061 SiC‐graphite particulate reinforced hybrid…

Abstract

Purpose

The purpose of this technical paper is to investigate the friction and wear behaviour of heat treated Al 6061 alloy and Al 6061 SiC‐graphite particulate reinforced hybrid composites subjected to different ageing durations.

Design/methodology/approach

The composites have been prepared by stir casting process with varying percentages of SiC and graphite particles. The cast 6061 alloy and its composites were subjected to solutionising treatment at a temperature of 803 K for 1 hr followed by quenching in water. The quenched samples were then subjected to artificial ageing for different durations of 4, 6, 8 hr at a temperature of 448 K. Tests were performed on heat treated Al 6061 alloy and its composites using pin‐on‐disc apparatus. Hardness measurements were also made on the specimens. The wear surfaces of the composites were analyzed using scanning electron microscopy.

Findings

During wear test of specimens the wear resistance of the hybrid composites was found to increase with increase in ageing durations. The microscopic examination of the wear surfaces shows that the base alloy and composites wear primarily because of abrasion and delamination. The hardness result shows that the hardness of the composites increased with decreasing weight percentage of graphite particles.

Originality/value

The content of this paper is fully research oriented and the finding from this investigation will be useful for society and also the automobile industries, especially in the making of brake drums.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

C. Velmurugan, R. Subramanian, S. Thirugnanam and B. Anandavel

The purpose of this paper is to produce Al6061 metal matrix composites reinforced with silicon carbide (SiC) and graphite particulates and study their wear behavior and also to…

Abstract

Purpose

The purpose of this paper is to produce Al6061 metal matrix composites reinforced with silicon carbide (SiC) and graphite particulates and study their wear behavior and also to develop artificial neural network model to predict the mass loss of hybrid composites.

Design/methodology/approach

The hybrid composites were produced by using stir casting process. The experiments were conducted based on the central composite rotatable design matrix using pin‐on‐disc wear testing machine. The set of data collected from the experimental values were used to train a back propagation (BP) learning algorithm with one hidden layer network. In artificial neural network (ANN) training module, four input vectors were used in the construction of proposed network namely, weight percentage of SiC particles, weight percentage of graphite particles, applied load and sliding distance. Mass loss was the output to be obtained from the proposed network. After training process, the test data collected from the experimental values were used to check the accuracy of proposed ANN model.

Findings

The results show that the well trained one hidden layer network have smaller training errors and much better generalization performance and can be successfully used for the prediction of mass loss of hybrid aluminium metal matrix composites.

Originality/value

In this paper the ANN method was adopted to predict the mass loss of hybrid composites. It was found that artificial neural network can be successfully used for prediction of mass loss of composites.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 September 2012

N. Radhika, R. Subramanian, S. Venkat Prasat and B. Anandavel

Recent trends in material science show a considerable interest in the manufacturing of metal matrix composites to meet the stringent demands of lightweight, high strength and…

Abstract

Purpose

Recent trends in material science show a considerable interest in the manufacturing of metal matrix composites to meet the stringent demands of lightweight, high strength and corrosion resistance. Aluminium is the popular matrix metal currently in vogue that can be reinforced with ceramic materials such as particulates to meet the desired property. The purpose of this paper is to fabricate hybrid metal matrix composites to improve the dry sliding wear resistance and to study of the effect of sliding speed, load and reinforcement (alumina and graphite) on wear properties, as well as its contact friction.

Design/methodology/approach

The present study addresses the dry sliding wear behaviour of Al‐Si10Mg alloy reinforced with 3, 6 and 9 wt% of alumina along with 3 wt% of graphite. Stir casting method was used to fabricate the composites. Mechanical properties such as hardness and tensile strength have been evaluated. A pin‐on‐disc wear test apparatus was used to evaluate the wear rate and coefficient of friction by varying the loads of 20, 30 and 40 N, sliding speeds of 1.5 m/s, 2.5 m/s and 3.5 m/s at a constant sliding distance of 2100 m.

Findings

Mechanical properties of hybrid metal matrix composites (HMMCs) have shown significant improvement. The wear rate and coefficient of friction for alloy and composites decreased with increase in sliding speed and increased with increase in applied load. Temperature rise during wearing process for monolithic alloy was larger than that of HMMCs and Al/9% Al2O3/3% Gr composite showing the minimum temperature rise.The worn surfaces of the composites were investigated using scanning electron microscope.

Practical implications

The paper shows that aluminium composites can improve strength and wear resistance.

Originality/value

HMMCs has proven to be useful in improving the dry sliding wear resistance.

Details

Industrial Lubrication and Tribology, vol. 64 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2019

Praveen Kumar Bannaravuri and Anil Kumar Birru

The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this…

Abstract

Purpose

The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this research is the development of cost-effective aluminum hybrid metal matrix composites.

Design/methodology/approach

The present research work investigation evaluated the mechanical properties of Al-4.5%Cu alloy, Al-4.5Cu/10SiC, Al-4.5Cu/10SiC/2BLA and Al-4.5Cu/10SiC/4BLA composites by the Stir casting method. The fabricated composites were analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and hardness and tensile test.

Findings

The microstructure modification with the addition of reinforcement particles in the matrix alloy and clear interface in between matrix and particles are observed. The density of the composite increased with the addition of SiC and decreased with the addition of BLA in comparison with that of matrix alloy. The hardness and tensile strength of the single-reinforced composite and hybrid composites improved with the addition of reinforcement particles. The strengthening of composites was due to load-bearing capacity of reinforcement particles over the matrix alloy and increased dislocation density of composites materials. The tensile failure mechanism of the composites is reveled with SEM analysis.

Practical implications

The papers reports the development of cost-effective and light weight aluminum hybrid composites with remarkable enhancement in the mechanical and tribological properties with the addition of BLA as economical reinforcement along with SiC.

Originality/value

The density, hardness and tensile values of fabricated aluminium composites were presented in this paper for the use in the engineering applications where the weight and cost are consider as a primary factors.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 March 2018

X. Canute and M.C. Majumder

Aluminium metal matrix composites are used in automotive and aerospace industries because of their high performance and weight reduction benefits. The current investigation aims…

Abstract

Purpose

Aluminium metal matrix composites are used in automotive and aerospace industries because of their high performance and weight reduction benefits. The current investigation aims to focus on the development of the stir cast aluminium-boron carbide composites with enhanced mechanical and tribological properties.

Design/methodology/approach

The aluminium-boron carbide composites are produced by stir casting process. Aluminium alloy A356 is chosen as the matrix material and three sets of composites are produced with different weight fractions of boron carbide particles. Higher particle size (63 µm) of boron carbide is chosen as the reinforcement material. Aluminium-boron carbide composites are tested for mechanical and tribological properties. The effect of process parameters like load, speed and percentage of reinforcement on the wear rate are studied using the pin-on-disc method. The interaction of the process parameters with the wear rate is analysed by DesignExpert software using RSM methodology and desirability analysis. The coded levels for parameters for independent variables used in the experimental design are arranged according to the central composite design. The worn surface of the pin is examined using a scanning electron microscope. The phases and reaction products of the composites are identified by X-ray diffraction (XRD) analysis.

Findings

Aluminium-boron carbide composites reveal better mechanical properties compared to monolithic aluminium alloys. Mechanical properties improved with the addition of strontium-based master alloy Al10Sr. The ultimate tensile strength, hardness and compressive strength increase with an increase in the reinforcement content. The wettability of the boron carbide particles in the matrix improved with the addition of potassium flurotitanate to the melt. Uniform dispersion of particles into the alloy during melting is facilitated by the addition of magnesium. Wear resistance is optimal at 8 per cent of boron carbide with a load 20 N and sliding speed of 348 RPM. The wear rate is optimized by the numerical optimization method using desirability analysis. The amount of wear is less in Al-B4C composites when compared to unreinforced aluminium alloy. The wear rate increases with an increase in load and decreases with the sliding speed. The wear resistance increases with an increase in the weight fraction of the boron carbide particles.

Practical implications

The produced Al-B4C composites can retain properties at high temperature. It is used in nuclear and automotive products owing its high specific strength and stiffness. The main applications are neutron absorbers, armour plates, high-performance bicycles, brake pads, sand blasting nozzles and pump seals.

Originality/value

Al/B4C composites have good potential in the development of wear-resistant products.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

H. Siddhi Jailani, A. Rajadurai, B. Mohan and T. Sornakumar

Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength…

Abstract

Purpose

Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The purpose of this paper is to describe the tribological studies of Al-Si alloy–fly ash composites manufactured using powder metallurgy technique.

Design/methodology/approach

Al-Si (12 Wt.%) alloy–fly ash composites were developed using powder metallurgy technique. Al-Si alloy powder was used as matrix material, and the fly ash was used as reinforcement. The particle size of Al-Si alloy powder was in the range of 75-300 μm, and the fly ash was in the range of 1-15 μm. The friction and wear characteristics of the composites were studied using a pin-on-disc set up. The test specimen was mated against cast iron disc, and the tests were conducted with the loads of 10, 20 and 30 N, sliding speeds of 0.5, 1 and 1.5 m/s for a sliding distance of 2,000 m.

Findings

The effects of load and sliding speed on tribological properties of the base alloy and Al-Si alloy–fly ash composites pins on sliding with cast iron disc are evaluated. The wear rate of Al-Si alloy–fly ash composites is lower than that of base alloy, and it increases with increasing load and sliding speed. The coefficient of friction of Al-Si alloy–fly ash composites is increased as compared with base alloy.

Practical implications

The development of Al-Si alloy–fly ash composites produced by powder metallurgy technique will modernize the automobile and other industries because near net shape at low cost and good mechanical properties are obtained.

Originality/value

There are few papers available on the development and tribological studies of Al-Si alloy–fly ash composites produced by powder metallurgy technique.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2016

Ferit Ficici

The paper aims to describe the Taguchi design method-based abrasive wear modeling of in situ AlB2 flake reinforced Al-4Cu matrix alloy composites.

Abstract

Purpose

The paper aims to describe the Taguchi design method-based abrasive wear modeling of in situ AlB2 flake reinforced Al-4Cu matrix alloy composites.

Design/methodology/approach

The abrasive wear behaviors of the composite samples were investigated using pin-on-disk method where the samples slid against different sizes of SiC abrasive grits under various testing conditions. The orthogonal array, signal-to-noise (S/N) ratio and analysis of variance were used to study the optimal testing parameters on composite samples.

Findings

The weight loss of composites decreased with increasing grit size and percentage reinforcement and increased with increasing sliding speed. The optimum test condition, at which the minimum weight loss is obtained, has been determined to be A3B3C1 levels of the control factors. Deviations between the actual and the predicted S/N ratios for abrasive weight losses are negligibly small with 99.5 per cent confidence level.

Originality/value

This paper fulfils an identification of Taguchi method-based abrasive wear behavior of AlB2/Al-4Cu metal matrix composites produced by squeeze casting under various testing conditions.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 May 2021

Sakthi Sadhasivam RM, Ramanathan K., Bhuvaneswari B.V. and Raja R.

The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties…

Abstract

Purpose

The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route.

Design/methodology/approach

In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work.

Findings

XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces.

Originality/value

The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Access

Year

All dates (19)

Content type

1 – 10 of 19