Search results

1 – 10 of 255
Article
Publication date: 13 March 2017

H. Siddhi Jailani, A. Rajadurai, B. Mohan and T. Sornakumar

Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength…

Abstract

Purpose

Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The purpose of this paper is to describe the tribological studies of Al-Si alloy–fly ash composites manufactured using powder metallurgy technique.

Design/methodology/approach

Al-Si (12 Wt.%) alloy–fly ash composites were developed using powder metallurgy technique. Al-Si alloy powder was used as matrix material, and the fly ash was used as reinforcement. The particle size of Al-Si alloy powder was in the range of 75-300 μm, and the fly ash was in the range of 1-15 μm. The friction and wear characteristics of the composites were studied using a pin-on-disc set up. The test specimen was mated against cast iron disc, and the tests were conducted with the loads of 10, 20 and 30 N, sliding speeds of 0.5, 1 and 1.5 m/s for a sliding distance of 2,000 m.

Findings

The effects of load and sliding speed on tribological properties of the base alloy and Al-Si alloy–fly ash composites pins on sliding with cast iron disc are evaluated. The wear rate of Al-Si alloy–fly ash composites is lower than that of base alloy, and it increases with increasing load and sliding speed. The coefficient of friction of Al-Si alloy–fly ash composites is increased as compared with base alloy.

Practical implications

The development of Al-Si alloy–fly ash composites produced by powder metallurgy technique will modernize the automobile and other industries because near net shape at low cost and good mechanical properties are obtained.

Originality/value

There are few papers available on the development and tribological studies of Al-Si alloy–fly ash composites produced by powder metallurgy technique.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2008

S.A. Kori, T.M. Chandrashekharaiah, V. Auradi and V.R. Kabadi

This paper aims to study the effect of Al‐Ti‐B grain refiners on the wear behaviour of hypoeutectic (Al‐0.2, 2, 3, 4, 5 and 7Si alloys) Al‐Si alloys against steel counterface…

Abstract

Purpose

This paper aims to study the effect of Al‐Ti‐B grain refiners on the wear behaviour of hypoeutectic (Al‐0.2, 2, 3, 4, 5 and 7Si alloys) Al‐Si alloys against steel counterface using a Pin‐On‐Disc machine under dry sliding conditions.

Design/methodology/approach

In the present study, Al‐5Ti‐1B and Al‐1Ti‐3B grain refiners were used for the refinement of α‐Al dendrites in hypoeutectic Al‐Si alloys. Various parameters such as alloy composition, normal pressure, sliding speed and sliding distance were studied on Al‐Si alloys. Worn surfaces were characterized by SEM/EDX microanalysis.

Findings

Wear resistance of hypoeutectic Al‐Si alloys increases with the addition of Al‐Ti‐B refiners when compared with the absence of grain refiner.

Research limitations/implications

The effects of normal pressure, sliding speed and sliding distance were studied by varying one parameter and keeping constant the other two parameters.

Originality/value

This paper provides information on improvement in wear properties of Al‐Si alloys by the addition of Al‐Ti‐B grain refiners. The effects of silicon and grain refiners containing Ti/B play a vital role and are responsible for the wear resistance of the alloys, which helps the industrialists in manufacturing Al‐Si alloy components.

Details

Industrial Lubrication and Tribology, vol. 60 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 June 2010

Sibel Zor, Muzaffer Zeren, Hatice Ozkazanc and Erdem Karakulak

The purpose of this paper is to understand corrosion behavior of different Cu‐containing Al‐Si‐x% Cu alloys (x: 1 wt% Cu, 2 wt% Cu, 3 wt% Cu, 4 wt% Cu, and 5 wt% Cu) in 0.1 M HCl…

Abstract

Purpose

The purpose of this paper is to understand corrosion behavior of different Cu‐containing Al‐Si‐x% Cu alloys (x: 1 wt% Cu, 2 wt% Cu, 3 wt% Cu, 4 wt% Cu, and 5 wt% Cu) in 0.1 M HCl and 0.1 M H2SO4.

Design/methodology/approach

Potentiodynamic, chronoamperometric and impedance measurements were applied to specimens to obtain their electrochemical characteristics. For the long‐term analyses, hydrogen evolution with immersion time (Vt) was measured. The corroded surfaces of the alloys were investigated using scanning electron microscopy (SEM) to understand the corrosion mechanism.

Findings

All experimental investigations showed that the corrosion resistance of alloys increased with increasing Cu content in the alloys.

Research limitations/implications

Cu‐containing aluminum alloys are age‐hardenable alloys. The corrosion behaviour of these alloys can be changed by heat treatment. Corrosion test results for the heat treated and aged alloys will be discussed in another study.

Originality/value

Al‐Si‐Cu alloys are widely used in the automobile industry and the corrosion behaviour of these alloys has a great importance on the service life of these materials. Understanding the effect of copper and the corrosion mechanism of these alloys will be helpful in predicting and prolonging the service life of these materials.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 May 2020

Yafei Deng, Xiaotao Pan, Guoxun Zeng, Jie Liu, Sinong Xiao and Zhenquan Zhou

This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate.

Abstract

Purpose

This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate.

Design/methodology/approach

Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s.

Findings

The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C.

Originality/value

This material has excellent friction properties and is able to maintain this excellent performance at high temperatures.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2011

Erol Feyzullahoğlu and Nehir Şakiroğlu

The purpose of this study is to develop new Al‐based bearing alloys which have better properties than classic commercial bearing materials and to analyze tribologic properties of…

Abstract

Purpose

The purpose of this study is to develop new Al‐based bearing alloys which have better properties than classic commercial bearing materials and to analyze tribologic properties of these alloys under dry sliding conditions experimentally.

Design/methodology/approach

Four different aluminium alloys were produced with casting method and tested on pin‐on‐disc wear testing machine. Friction coefficients and weight losses of the samples were determined under various working conditions in consequence of the experiments. Hardness, surface roughness, and surface temperatures of the samples were measured.

Findings

The results of the experiment show that friction coefficients vary by surface pressure and sliding speed. Al15Pb3.7Cu1.5Si1.1Fe and Al15Sn5Cu3Si alloys have lower friction coefficient values than other alloys. Al8.5Si3.5Cu alloy has the biggest wear resistance. Al15Pb3.7Cu1.5Si1.1Fe and Al15Sn5Cu3Si alloys are the most worn materials. Al8.5Si3.5Cu alloy has the lowest wear rate.

Research limitations/implications

When the comparison was done between commercial Al alloys and developed Al alloys in this study, it was seen that Al15Sn5Cu3Si and Al15Pb3.7Cu1.5Si1.1Fe alloys have lower friction coefficient values than other commercial alloys.

Practical implications

The effects of the elements except aluminium composing alloys upon tribologic properties were analyzed. Some of the alloy elements were seen to improve tribologic properties whereas some downgrade. When the results are evaluated, Al15Sn5Cu3Si and Al8.5Si3.5Cu alloys containing Si and Sn can be preferred among the aluminium alloys that will work under dry sliding.

Originality/value

This paper reveals new bearing materials. These alloys can be used in journal bearings.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 October 2021

K. Ch Appa Rao, Anil Kumar Birru, Praveen Kumar Bannaravuri and E. Daniel Francis

Nowadays, ample industries are fascinated to look for high strength and light weight materials for the development of robust parts. Because of light weight and high stiffness to…

Abstract

Purpose

Nowadays, ample industries are fascinated to look for high strength and light weight materials for the development of robust parts. Because of light weight and high stiffness to weight ratio; usage of aluminum parts is growing rapidly, especially in automotive engineering. Process improvement of Al alloys and their grain structure refinement is the current area of interest in casting companies. In this research work, an investigation has been carried out to enhance the process improvement of die casting by optimization of various significant parameters and their refinement of grains by the effect of Nb-C novel grain refiner.

Design/methodology/approach

L27 orthogonal array (OA) has been considered to optimize the preferred casting input parameters such as molten metal temperature (°C), die temperature (°C), injection pressure (bar), Al-3.5Nb-1.5 C novel grain refiner and Ni alloying additions as key process parameters in order to increase the quality and efficiency of Al-9Si-3Cu aluminum alloy die casting by reducing the porosity formation.

Findings

It was observed that the porosity values have significantly decreased from 0.88% to 0.25% particularly at 0.1 wt.% of new grain refiner and 0.5 wt. % of Al-6Ni master alloy. As per the ANOVA results, it was observed that Al-3.5FeNb-1.5 C grain refiner (F value 2609.22), Al-6Ni alloying addition (F value 1329.13), molten metal temperature (F value 1002.43) and, injection pressure (F value 448.06) are the factors that significantly affects the porosity, whereas die temperature was found to be insignificant. The results show that new grain refiner is one the most significant factor among the other selected parameters. The contribution of the new grain refiner to the variation of mean casting porosity is around 57.74%. confidence interval (CI) has also been estimated as 0.013 for 95% consistency level to validate the predicted range of optimum casting porosity of aforesaid alloy.

Originality/value

To the best of the authors' knowledge, no study has been conducted in the past to investigate the combined effect of these die casting parameters and composition factors for the development of Al-Si robust cast parts. The paper represents original research and provides new information for the fabrication of die casting parts.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 March 2012

Eyitayo Olatunde Olakanmi, Kenneth W. Dalgarno and Robert F. Cochrane

The purpose of this paper is to study the effects of particle size distribution, component ratio, particle packing arrangement, and chemical constitution on the laser sintering…

1252

Abstract

Purpose

The purpose of this paper is to study the effects of particle size distribution, component ratio, particle packing arrangement, and chemical constitution on the laser sintering behaviour of blended hypoeutectic Al‐Si powders.

Design/methodology/approach

A range of bimodal and trimodal powder blends were created through mixing Al‐12Si and pure aluminium powder. The powder blends were then processed using selective laser sintering to investigate the effect of alloy composition, powder particle size and bed density on densification and microstructural evolution.

Findings

For all of the powder blends the sintered density increases with the specific laser energy input until a saturation level is reached. Beyond this saturation level no further increase in sintered density is obtained for an increase in specific laser energy input. However, the peak density achieved for a given blend varied significantly with the chemical constitution of the alloy, peaking at approximately 9 wt% Si. The tap density of the raw powder mixture (assumed to be representative of bed density) was also a significant factor.

Originality/value

This is the first study to consider the usefulness of silicon as an alloying element in aluminium alloys to be processed by selective laser sintering. In addition the paper outlines the key factors in optimising processing parameters and powder properties in order to attain sound sinterability for direct laser sintered parts.

Article
Publication date: 8 June 2021

Eryong Liu, Yuan Xue, Yaping Bai, Jibin Pu, Shuangming Du and Huiling Du

The purpose of this paper is to improve the tribological properties of aluminum cylinder liner. Higher martensite contents were closely related to the higher hardness and…

Abstract

Purpose

The purpose of this paper is to improve the tribological properties of aluminum cylinder liner. Higher martensite contents were closely related to the higher hardness and excellent wear resistance of Fe-based coatings. Furthermore, the grain size of the Fe-based coating was approximately 40 nm, which provides an excellent fine grain strengthening effect.

Design/methodology/approach

To improve the tribological properties of aluminum cylinder liners, a Fe-based martensite coating was prepared by internal plasma spraying technology, whose microstructure and tribological properties were then investigated.

Findings

Sprayed Fe-based coating possessed a low contact angle and strong adhesion with lubricating oil. In a simulated engine condition, Fe-based coating exhibited a decreased friction coefficient and increased wear resistance under oil lubrication, which was dominated by a stronger adhesive force with lubricating oil, higher martensite contents on the worn surface, higher hardness and higher H/E value than those of the reference HT 200 and Al-19Si cylinder material.

Originality/value

Nanostructure Fe-based martensite coating was sprayed on an aluminum cylinder liner, which demonstrated remarkable advantages over the reference cylinder material.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 May 2020

Karthikeyan S, Karunanithi R and Ashoke Ghosh

Aluminium is the most proficiently and commonly used metal due to its desirable physical, chemical and mechanical properties. When Aluminium reinforced with hard ceramic…

Abstract

Purpose

Aluminium is the most proficiently and commonly used metal due to its desirable physical, chemical and mechanical properties. When Aluminium reinforced with hard ceramic particles, shows increased strength and good corrosion resistant and wear resistant qualities. In the present investigation, A390 + X vol. % Zro2 (X = 5, 10 and 15) composites have been fabricated through P/M technique.

Design/methodology/approach

After that the microstructural properties are tested by scanning electron microscope (SEM) analysis wear test is performed using pin-on-disc machine.

Findings

The wear conditions of applied load 30N and sliding velocity 1 m/s and track distance 1000m was followed. A390 + 15% Zro2 of surface of the composites unveiled greater hardness when compared with A390 alloy.

Originality/value

A390 + 15% Zro2 exhibited superior wear resistance than that of the matrix alloy. Thus the material proves as an excellent solution for applications that requires high wear resistance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 November 2021

M. Poornesh, Shreeranga Bhat, E.V. Gijo and Pavana Kumara Bellairu

This article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as…

Abstract

Purpose

This article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as the reinforcing element. More specifically, the study's primary objective is to optimize the composition of the material elements using a robust statistical approach.

Design/methodology/approach

In this research, the composite material is fabricated using a combination of stir casting and the centrifugal casting technique. Moreover, the test specimen required to study the tensile strength are prepared according to the ASTM (American Society for Testing and Materials) standards. Eventually, optimal composition to maximize the tensile property of the material is determined using the mixture design approach.

Findings

The investigation results imply that the addition of the SiC plays a crucial role in increasing the tensile strength of the composite. The optical microstructural images of the composite show the adequate distribution of the reinforcing particles with the matrix. The proposed regression model shows better predictability of tensile strength. In addition, the methodology aids in optimizing the mixture component values to maximize the tensile strength of the produced functionally graded composite structure.

Originality/value

Little work has been reported so far where a hypereutectic Al–Si alloy is considered the matrix material to produce the composite structure. The article attempts to make a composite structure by using a combination of stir casting and centrifugal casting. Furthermore, it employs the mixture design to optimize the composition and predict the model of the study, which is one of a kind in the field of material science.

1 – 10 of 255