Search results

1 – 10 of over 4000
Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 January 2018

Salah F. El-Fitiany and Maged A. Youssef

Existing analytical methods for the evaluation of fire safety of reinforced concrete (RC) structures require extensive knowledge of heat transfer calculations and the finite…

Abstract

Purpose

Existing analytical methods for the evaluation of fire safety of reinforced concrete (RC) structures require extensive knowledge of heat transfer calculations and the finite element method. This paper aims to propose a rational method to predict the axial capacity of RC columns exposed to standard fire.

Design/methodology/approach

The average temperature distribution along the section height is first predicted for a specific fire scenario. The corresponding distribution of the reduced concrete strength is then integrated to develop expressions to calculate the axial capacity of RC columns exposed to fire from four faces.

Findings

These expressions provide structural engineers with a rational tool to satisfy the objective-based design clauses specified in the National Code of Canada in lieu of the traditional prescriptive methods.

Research limitations/implications

The research is limited to standard fire curves and needs to be extended to cover natural fire curves.

Originality/value

This paper is the first to propose an accurate yet simple method to calculate the axial capacity of columns exposed to standard fire curves. The method can be applied using a simple Excel sheet. It can be further developed to apply to natural fire curves.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 April 2014

Shun-Te Hsiao, Yuan Kang, Shyh-Ming Jong, Hsing-Han Lee, De-Xing Peng and Yeon-Pun Chang

This paper aims to study the static characteristics of the hydrostatic conical journal bearings by utilizing single-action membrane restrictors to compensate the working pressures…

Abstract

Purpose

This paper aims to study the static characteristics of the hydrostatic conical journal bearings by utilizing single-action membrane restrictors to compensate the working pressures of recesses.

Design/methodology/approach

The flow resistance network method is used to analyze the influences of load capacity and static stiffness of bearing with the design parameters, including the number of recesses, radial eccentricity ratio, axial displacement ratio, restriction constant, membrane compliance, length-diameter ratio, circumferential land width ratio, axial land width ratio and half of cone angle.

Findings

This study shows the infinite stiffness of the oil produced in the first and second recesses while single-action membrane restriction constant of 2 and 3, respectively, as well as in the fourth recess while single-action membrane restriction constant of 0.01 and 0.1, respectively.

Research limitations/implications

This article provides the hydrostatic conical bearings in static and unbiased states for analyses of design parameters. The analyses ignore dynamic pressure effect and do not use the Reynolds equation, and assuming that each oil recesses pressure is constant.

Practical implications

The influences of the design parameters including the number of recesses, membrane restriction, membrane compliance, length-diameter ratio, half of con-angle, circumferential land width ratio, and axial land width ratio are discussed to the load capacity and static stiffness of conical bearing.

Originality/value

Based on the characteristics of the conical bearing through analysis, this article suggests the front bearing with hard membrane restrictor (capillary) and the back bearing with soft membrane restrictor are the most appropriate for axial stiffness.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 November 2019

Saranya Ilango and Sunil Mahato

Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to…

Abstract

Purpose

Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to the vertical structural members. Other advantages include high stiffness, better resistance to corrosion, increased pace of construction, enhanced bearing capacity, etc. The purpose of this paper is to understand the various behavioural aspects of concrete in-filled cold-formed duplex stainless steel (CI-CFDSS) square tubular column under axial compressive loads and to assess its structural performance.

Design/methodology/approach

In the current paper, the performance of CI-CFDSS square tubular column is numerically investigated under uniform static loading using finite element technique. The numerical study was based on an experimental investigation, which was carried out earlier, in order to study the effects of concrete strength and shape of stainless steel tube on the strength and behaviour of CI-CFDSS square tubular column. The experimental CI-CFDSS square tubular column has a length equal to 450 mm, breadth of 150 mm, width of 150 mm, thickness of 6 mm and a constant ratio of length to overall depth equal to 3. Numerical modelling of the experimental specimen was carried out using ABAQUS software by providing appropriate material properties. Non-linear finite element analysis was performed and the load vs axial deflection curve of the numerical CI-CFDSS square tubular column obtained was validated with the results of the experiment. In order to understand the behaviour of CI-CFDSS square tubular column under axial compressive loads, a parametric study was performed by varying the grade of concrete, type of stainless steel, thickness of stainless steel tube and shape of cross section. From the results, the performance of CI-CFDSS square tubular column was comparatively studied.

Findings

When the grade of concrete was increased the deformation capacity of the CI-CFDSS square tubular column reduced but showed better load carrying capacity. The steel tube made of duplex stainless steel exhibited enhanced performance in terms of load carrying capacity and axial deformation than the other forms, i.e. austenitic and ferritic stainless steel. The most suitable cross section for the CI-CFDSS square tubular column with respect to its performance is rectangular cross section and variation of the steel tube thickness led to the change of overall dimensions of the N-CI-CFDSS-SHS1C40 square tubular column showing marginal difference in performance.

Originality/value

The research work presented in this manuscript is authentic and could contribute to the understanding of the behavioural aspects of CI-CFDSS square tubular column under axial compressive loads.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 December 2022

Aishwarya Narang, Ravi Kumar and Amit Dhiman

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and…

Abstract

Purpose

This study seeks to understand the connection of methodology by finding relevant papers and their full review using the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA).

Design/methodology/approach

Concrete-filled steel tubular (CFST) columns have gained popularity in construction in recent decades as they offer the benefit of constituent materials and cost-effectiveness. Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Gene Expression Programming (GEP) and Decision Trees (DTs) are some of the approaches that have been widely used in recent decades in structural engineering to construct predictive models, resulting in effective and accurate decision making. Despite the fact that there are numerous research studies on the various parameters that influence the axial compression capacity (ACC) of CFST columns, there is no systematic review of these Machine Learning methods.

Findings

The implications of a variety of structural characteristics on machine learning performance parameters are addressed and reviewed. The comparison analysis of current design codes and machine learning tools to predict the performance of CFST columns is summarized. The discussion results indicate that machine learning tools better understand complex datasets and intricate testing designs.

Originality/value

This study examines machine learning techniques for forecasting the axial bearing capacity of concrete-filled steel tubular (CFST) columns. This paper also highlights the drawbacks of utilizing existing techniques to build CFST columns, and the benefits of Machine Learning approaches over them. This article attempts to introduce beginners and experienced professionals to various research trajectories.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 May 2020

Khaled Ahmed Mahmoud

Previous works in constructing interaction diagrams have only focused on incorporating transient creep strain implicitly in the ultimate limit strain. The present paper aims to…

Abstract

Purpose

Previous works in constructing interaction diagrams have only focused on incorporating transient creep strain implicitly in the ultimate limit strain. The present paper aims to use different approaches to define concrete ultimate limit strain (failure strain) envelops at high temperatures for preloaded and unloaded, confined and unconfined, columns during heating are proposed. These approaches are chosen to understand the effect of using different techniques to determine transient creep strain on the resulted NuMu diagrams.

Design/methodology/approach

Transient creep strain is included within the concrete ultimate limit strain relationships, implicitly and explicitly, by four different ways, and accordingly, four different failure criteria are suggested. To define the concrete ultimate limit strain, studies are conducted to evaluate the compression strain corresponding to the maximal flexural capacity at elevated temperatures. In the analysis, the thermal and structural analyses are decoupled and, based on the resulted ultimate limit strain, the NuMu diagrams are constructed at different fire exposures.

Findings

The validity of the proposed model is established by comparing its predictions with experimental results found in the literature. Finally, comparative calculations regarding interaction diagrams obtained by the proposed model and by other methods found in the literature are performed. It was found that the proposed model predictions agree well with experimental results. It was also found that the suggested approaches, which include simplifications, reasonably predicted the exact column capacity.

Originality/value

The model.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 October 2022

Yasmeen Taleb Obaidat, Wasim Barham and Rawan Abu libdeh

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced…

Abstract

Purpose

The main aim of this study is to examine the behavior of reinforced concrete short columns strengthened using longitudinal near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips.

Design/methodology/approach

A full 3D-finite element (FE) model was developed using ABAQUS in order to conduct the analysis. The model is first validated based on experimental data available in the literature, and then the effect of concrete compressive strength, number of CFRP strips that are used and the spacing between them were taken in consideration for both concentric and eccentric loading cases. The parametric study specimens were divided into three groups. The first group consisted of unstrengthened columns and served as control specimens. The second group consisted of columns strengthened by longitudinal CFRP strips at two opposite column faces.

Findings

The results of this study are used to develop interaction diagrams for CFRP-strengthened short columns and to develop best-fit equations to estimate the nominal axial load and moment capacities for these strengthened columns. The results showed that the specimens that were strengthened using more longitudinal CFRP strips showed a significant increase in axial load capacity and a significant improvement in the interaction diagram, especially at large load eccentricity values. This result can be justified by the fact that longitudinal strips effectively resist the bending moment that is generated due to eccentric loading. Generally, the process of strengthening using longitudinal strips only has a reasonable effect and it can be typically considered an excellent choice considering the economic aspect when the budget of strengthening is limited.

Originality/value

This research aims at studying the performance of strengthened rectangular reinforced concrete short columns with CFRP strips using FE method, developing interaction diagrams of strengthened columns in order to investigate the effect of different parameters such as compressive strength (20, 30 and 40 MPa), number of CFRP strips (1, 2, 3 and 4) and the spacing between CFRP strips in terms of the ratio of CFRP center point distance to column outside dimension ratio (0.60, 0.70 and 0.80) on the behavior of strengthened RC columns and improving empirical formulas to predict the nominal axial load and moment capacities of strengthened RC columns. These parameters that directly affect short column load carrying capacity are presented in ACI-318 (2014).

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 21 July 2023

Jinhua Sun

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance…

Abstract

Purpose

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance. Significant design progress guidance has been made through continuous numerical and experimental research in recent years. This paper tested and analysed the residual loading capacity of SRCFST columns under axial loading after experiencing non-uniform ISO-834 standard fire.

Design/methodology/approach

The experimental research covered the main parameter of heating conditions, 1-side and 2-side fire, through two specimens. Two specimens were heated and loaded simultaneously in the furnace for 240 min. After cooling, the columns were moved to the hydraulic loading system and loaded to failure to determine the columns' residual capacity.

Findings

The experimental results indicated that the non-uniform heating area plays an essential role in the overall performance of SRCFST columns, the increasing heating area of columns results in lower residual loading capacity and stiffness. The SRCFST columns still had a high loading capacity after heating and loading in the fire.

Originality/value

The comparison of experimental data against design results showed that the design method generated a 16% safety margin for S2H4 and a 39% safety margin for S1H4.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 March 1981

R.A. HOBBS

SELECTION of the most suitable bearing type for a particular duty can pose a difficult problem due to the wide range of bearings available. To assist the designer these notes…

Abstract

SELECTION of the most suitable bearing type for a particular duty can pose a difficult problem due to the wide range of bearings available. To assist the designer these notes describe the more‐frequently‐used types of ball and roller bearings and their components, and refer to some of their uses and limitations.

Details

Industrial Lubrication and Tribology, vol. 33 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 19 September 2019

Jian Wang, Jing Feng Shen and Ya Wen Fan

The spherical hybrid sliding bearings (SHSBs) can be used in ultra-precision and heavy-duty machine tools. However, there is little related research for these bearings. The…

Abstract

Purpose

The spherical hybrid sliding bearings (SHSBs) can be used in ultra-precision and heavy-duty machine tools. However, there is little related research for these bearings. The purpose of this study is to investigate the static characteristics and effect factors affecting SHSBs by fluid lubrication.

Design/methodology/approach

Based on the theories of fluid lubrication, the Reynolds equation of general Newtonian fluid is derived to obtain the steady-state lubrication equation. The system is solved by the finite difference method and the relaxation iterative method on the staggered grid to obtain the thickness and the pressure distribution of the oil film. The radial and axial load capacities of SHSBs are determined by the pressure field integration over the spherical surface.

Findings

The results show that the parameters such as oil supply pressure, bearing clearance, eccentricity ratio, rotating speed and orifices’ number affecting the static characteristics of bearings are significant and the cross-coupling effect exists.

Originality/value

The lubrication model of SHSB is established to analyze the pressure distribution with a variety of oil film thickness. The laws of oil supply pressure, bearing clearance, eccentricity ratio, rotating speed and orifices’ number on the load capacities are researched.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 4000