Search results

1 – 10 of 244
Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 March 2024

Yahao Wang, Zhen Li, Yanghong Li and Erbao Dong

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new…

Abstract

Purpose

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new constraint method to improve the performance of the sampling-based planner.

Design/methodology/approach

In this work, a constraint method (TC method) based on the idea of cross-sampling is proposed. This method uses the tangent space in the workspace to approximate the constrained manifold pattern and projects the entire sampling process into the workspace for constraint correction. This method avoids the need for extensive computational work involving multiple iterations of the Jacobi inverse matrix in the configuration space and retains the sampling properties of the sampling-based algorithm.

Findings

Simulation results demonstrate that the performance of the planner when using the TC method under the end-effector constraint surpasses that of other methods. Physical experiments further confirm that the TC-Planner does not cause excessive constraint errors that might lead to task failure. Moreover, field tests conducted on robots underscore the effectiveness of the TC-Planner, and its excellent performance, thereby advancing the autonomy of robots in power-line connection tasks.

Originality/value

This paper proposes a new constraint method combined with the rapid-exploring random trees algorithm to generate collision-free trajectories that satisfy the constraints for a high-dimensional robotic system under end-effector constraints. In a series of simulation and experimental tests, the planner using the TC method under end-effector constraints efficiently performs. Tests on a power distribution live-line operation robot also show that the TC method can greatly aid the robot in completing operation tasks with end-effector constraints. This helps robots to perform tasks with complex end-effector constraints such as grinding and welding more efficiently and autonomously.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 July 2023

Narjess Said, Kaouther Ben Mansour, Nedra Bahri-Ammari, Anish Yousaf and Abhishek Mishra

This study aims to propose a research model integrating technology acceptance model 3 (TAM3) constructs and human aspects of humanoid service robots (HSRs), measured by the…

Abstract

Purpose

This study aims to propose a research model integrating technology acceptance model 3 (TAM3) constructs and human aspects of humanoid service robots (HSRs), measured by the Godspeed questionnaire series and tested across two hotel properties in Japan and the USA.

Design/methodology/approach

Potential participants were approached randomly by email invitation. A final sample size of 395 across two hotels, one in Japan and the other in the USA, was obtained, and the data were analysed using structural equation modelling.

Findings

The results confirm that perceived usefulness, driven by subjective norms and output quality, and perceived ease of use, driven by perceived enjoyment and absence of anxiety, are the immediate direct determinants of users’ re-patronage intentions for HSRs. Results also showed that users prefer anthropomorphism, perceived intelligence and the safety of an HSR for reusing it.

Practical implications

The findings have practical implications for the hospitality industry, suggesting multiple attributes of an HSRs that managers need to consider before deploying them in their properties.

Originality/value

The current study proposes an integrated model determining factors that affect the re-patronage of HSRs in hotels.

Details

International Journal of Contemporary Hospitality Management, vol. 36 no. 6
Type: Research Article
ISSN: 0959-6119

Keywords

Open Access
Article
Publication date: 14 February 2024

Chao Lu and Xiaohai Xin

The promotion of autonomous vehicles introduces privacy and security risks, underscoring the pressing need for responsible innovation implementation. To more effectively address…

Abstract

Purpose

The promotion of autonomous vehicles introduces privacy and security risks, underscoring the pressing need for responsible innovation implementation. To more effectively address the societal risks posed by autonomous vehicles, considering collaborative engagement of key stakeholders is essential. This study aims to provide insights into the governance of potential privacy and security issues in the innovation of autonomous driving technology by analyzing the micro-level decision-making processes of various stakeholders.

Design/methodology/approach

For this study, the authors use a nuanced approach, integrating key stakeholder theory, perceived value theory and prospect theory. The study constructs a model based on evolutionary game for the privacy and security governance mechanism of autonomous vehicles, involving enterprises, governments and consumers.

Findings

The governance of privacy and security in autonomous driving technology is influenced by key stakeholders’ decision-making behaviors and pivotal factors such as perceived value factors. The study finds that the governmental is influenced to a lesser extent by the decisions of other stakeholders, and factors such as risk preference coefficient, which contribute to perceived value, have a more significant influence than appearance factors like participation costs.

Research limitations/implications

This study lacks an investigation into the risk sensitivity of various stakeholders in different scenarios.

Originality/value

The study delineates the roles and behaviors of key stakeholders and contributes valuable insights toward addressing pertinent risk concerns within the governance of autonomous vehicles. Through the study, the practical application of Responsible Innovation theory has been enriched, addressing the shortcomings in the analysis of micro-level processes within the framework of evolutionary game.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 2
Type: Research Article
ISSN: 2071-1395

Keywords

Article
Publication date: 9 May 2024

Anna Korotysheva and Sergey Zhukov

This study aims to comprehensively address the challenge of delineating traffic scenarios in video footage captured by an embedded camera within an autonomous vehicle.

Abstract

Purpose

This study aims to comprehensively address the challenge of delineating traffic scenarios in video footage captured by an embedded camera within an autonomous vehicle.

Design/methodology/approach

This methodology involves systematically elucidating the traffic context by leveraging data from the object recognition subsystem embedded in vehicular road infrastructure. A knowledge base containing production rules and logical inference mechanism was developed. These components enable real-time procedures for describing traffic situations.

Findings

The production rule system focuses on semantically modeling entities that are categorized as traffic lights and road signs. The effectiveness of the methodology was tested experimentally using diverse image datasets representing various meteorological conditions. A thorough analysis of the results was conducted, which opens avenues for future research.

Originality/value

Originality lies in the potential integration of the developed methodology into an autonomous vehicle’s control system, working alongside other procedures that analyze the current situation. These applications extend to driver assistance systems, harmonized with augmented reality technology, and enhance human decision-making processes.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 14 May 2024

Saman Yazdannik, Shamim Sanisales and Morteza Tayefi

This paper introduces control strategy to enhance the performance of a novel quadrotor unmanned aerial vehicle designed for medical payload delivery. The aim is to achieve precise…

Abstract

Purpose

This paper introduces control strategy to enhance the performance of a novel quadrotor unmanned aerial vehicle designed for medical payload delivery. The aim is to achieve precise control and stability when carrying and releasing payloads, which alter the quadrotor’s mass and inertia characteristics.

Design/methodology/approach

The equations of motion specific to the payload-carrying quadrotor are derived. A feedforward-proportional-integral-derivative (FF-PID) control strategy is then proposed to address the dynamic changes during payload release. The PID components use propeller speed/orientation information for stability. FF terms based on derivatives of desired position/orientation variables enable adaptation to real-time mass fluctuations.

Findings

Extensive simulations, encompassing various fault scenarios, substantiate the effectiveness of the FF-PID approach. Notably, our findings demonstrate superior performance in maintaining altitude precision and stability during critical phases such as takeoff, payload release and landing. Graphical representations of thrust and mass dynamics distinctly illustrate the payload release event. In contrast to the linear quadratic regulator (LQR) and conventional PID control, which encountered difficulties during the payload release process, our approach proves its robustness and reliability.

Research limitations/implications

This study, primarily based on simulations, demands validation through real-world testing in diverse conditions. Uncertainties in dynamic parameters, external factors and the applicability of the proposed approach to other quadrotor configurations require further investigation. Additionally, this research focuses on controlled payload release, leaving unexplored the challenges posed by unforeseen scenarios or disturbances. Hence, adaptability and fault tolerance necessitate further exploration. While our work presents a promising approach, practical implementation, adaptability and resilience to unexpected events are vital considerations for future research in the field of autonomous aerial medical deliveries.

Practical implications

The proposed control strategy promises enhanced efficiency, reliability and adaptability for autonomous aerial medical deliveries in critical scenarios.

Social implications

The innovative control strategy introduced in this study holds the potential to significantly impact society by enhancing the reliability and adaptability of autonomous aerial medical deliveries. This could lead to faster and more efficient delivery of life-saving supplies to remote or disaster-affected areas, ultimately saving lives and reducing suffering. Moreover, the technology’s adaptability may have broader applications in fields like disaster relief, search and rescue missions, and industrial cargo transport. However, its successful integration into society will require careful regulation, privacy safeguards and ethical considerations to ensure responsible and safe deployment while addressing potential concerns related to noise pollution and privacy intrusion.

Originality/value

While PID control of quadrotors is extensively studied, payload release dynamics have been overlooked. This research studies integration of FF control to enable PID adaptation for a novel payload delivery application.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 14 May 2024

Klára Rybenská, Lenka Knapová, Kamil Janiš, Jitka Kühnová, Richard Cimler and Steriani Elavsky

A wide gap exists between the innovation and development of self-monitoring, analysis and reporting technology (SMART) technologies and the actual adoption by older adults or…

Abstract

Purpose

A wide gap exists between the innovation and development of self-monitoring, analysis and reporting technology (SMART) technologies and the actual adoption by older adults or those caring for them. This paper aims to increase awareness of available technologies and describes their suitability for older adults with different needs. SMART technologies are intelligent devices and systems that enable autonomous monitoring of their status, data analysis or direct feedback provision.

Design/methodology/approach

This is a scoping review of SMART technologies used and marketed to older adults or for providing care.

Findings

Five categories of SMART technologies were identified: (1) wearable technologies and smart tools of daily living; (2) noninvasive/unobtrusive technology (i.e. passive technologies monitoring the environment, health and behavior); (3) complex SMART systems; (4) interactive technologies; (5) assistive and rehabilitation devices. Technologies were then linked with needs related to everyday practical tasks (mainly applications supporting autonomous, independent living), social and emotional support, health monitoring/managing and compensatory assistance rehabilitation.

Research limitations/implications

When developing, testing or implementing technologies for older adults, researchers should clearly identify concrete needs these technologies help meet to underscore their usefulness.

Practical implications

Older adults and caregivers should weigh the pros and cons of different technologies and consider the key needs of older adults before investing in any tech solution.

Social implications

SMART technologies meeting older adult needs help support both independent, autonomous life for as long as possible as well as aiding in the transition to assisted or institutionalized care.

Originality/value

This is the first review to explicitly link existing SMART technologies with the concrete needs of older adults, serving as a useful guide for both older adults and caregivers in terms of available technology solutions.

Details

Journal of Enabling Technologies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 7 May 2024

Samer Abaddi

Artificial intelligence (AI) is a powerful and promising technology that can foster the performance, and competitiveness of micro, small and medium enterprises (MSMEs). However…

Abstract

Purpose

Artificial intelligence (AI) is a powerful and promising technology that can foster the performance, and competitiveness of micro, small and medium enterprises (MSMEs). However, the adoption of AI among MSMEs is still low and slow, especially in developing countries like Jordan. This study aims to explore the elements that influence the intention to adopt AI among MSMEs in Jordan and examines the roles of firm innovativeness and government support within the context.

Design/methodology/approach

The study develops a conceptual framework based on the integration of the technology acceptance model, the resource-based view, the uncertainty reduction theory and the communication privacy management. Using partial least squares structural equation modeling – through AMOS and R studio – and the importance–performance map analysis techniques, the responses of 471 MSME founders were analyzed.

Findings

The findings reveal that perceived usefulness, perceived ease of use and facilitating conditions are significant drivers of AI adoption, while perceived risks act as a barrier. AI autonomy positively influences both firm innovativeness and AI adoption intention. Firm innovativeness mediates the relationship between AI autonomy and AI adoption intention, and government support moderates the relationship between facilitating conditions and AI adoption intention.

Practical implications

The findings provide valuable insights for policy formulation and strategy development aimed at promoting AI adoption among MSMEs. They highlight the need to address perceived risks and enhance facilitating conditions and underscore the potential of AI autonomy and firm innovativeness as drivers of AI adoption. The study also emphasizes the role of government support in fostering a conducive environment for AI adoption.

Originality/value

As in many emerging nations, the AI adoption research for MSMEs in Jordan (which constitute 99.5% of businesses), is under-researched. In addition, the study adds value to the entrepreneurship literature and integrates four theories to explore other significant factors such as firm innovativeness and AI autonomy.

Details

Journal of Entrepreneurship in Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4604

Keywords

Open Access
Article
Publication date: 9 May 2024

Yanhao Sun, Tao Zhang, Shuxin Ding, Zhiming Yuan and Shengliang Yang

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to…

Abstract

Purpose

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to propose a scientific and reasonable centralized traffic control (CTC) system risk assessment method.

Design/methodology/approach

First, system-theoretic process analysis (STPA) is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis. Then, to enhance the accuracy of weight calculation, the fuzzy analytical hierarchy process (FAHP), fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and entropy weight method are employed to calculate the subjective weight, relative weight and objective weight of each index. These three types of weights are combined using game theory to obtain the combined weight for each index. To reduce subjectivity and uncertainty in the assessment process, the backward cloud generator method is utilized to obtain the numerical character (NC) of the cloud model for each index. The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system. This cloud model is used to obtain the CTC system's comprehensive risk assessment. The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud. Finally, this process yields the risk assessment results for the CTC system.

Findings

The cloud model can handle the subjectivity and fuzziness in the risk assessment process well. The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.

Originality/value

This study provides a cloud model-based method for risk assessment of CTC systems, which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment, achieving effective risk assessment of CTC systems. It can provide a reference and theoretical basis for risk management of the CTC system.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 244