Search results

1 – 10 of 934
Article
Publication date: 28 October 2020

Fernanda Rodrigues, Flávio Antunes and Raquel Matos

The use of building information modelling (BIM) methodology has been increasing in the architecture, engineering, construction and operation sector, driven to a new paradigm of…

Abstract

Purpose

The use of building information modelling (BIM) methodology has been increasing in the architecture, engineering, construction and operation sector, driven to a new paradigm of work with the use of three-dimensional (3D) parametric models. However, building information modelling (BIM) has been mostly used for as-built models of a building, not yet been widely used by designers during project and construction phases for occupational risks prevention and safety planning. This paper aims to show the capacity of developing tools that allow adding functionalities to Revit software to improve safety procedures and reduce the time spent on modelling them during the design phase.

Design/methodology/approach

To reach this objective, a structural 3D model of a building is used to validate the developed tools. A plugin prototype based on legal regulations was developed, allowing qualitative safety assessment through the application of job hazard analysis (JHA), SafeObject and checklists. These tools allow the automated detection of falls from height situations and the automated placement of the correspondent safety systems.

Findings

Revit application programming interface allowed the conception and addition of several functionalities that can be used in BIM methodology, and more specifically in the prevention of occupational risks in construction, contributing this paper to the application of a new approach to the prevention through design.

Originality/value

This paper is innovative and important because the developed plugins allowed: automated detection of potential falls from heights in the design stage; automated introduction of safety objects from a BIM Safety Objects Library; and the intercommunication between a BIM model and a safety database, bringing JHA integration directly on the project. The prototype of this work was validated for fall from height hazards but can be extended to other potentials hazards since the initial design stage.

Article
Publication date: 25 May 2022

Yee Sye Lee, Ali Rashidi, Amin Talei, Mehrdad Arashpour and Farzad Pour Rahimian

In recent years, deep learning and extended reality (XR) technologies have gained popularity in the built environment, especially in construction engineering and management. A…

Abstract

Purpose

In recent years, deep learning and extended reality (XR) technologies have gained popularity in the built environment, especially in construction engineering and management. A significant amount of research efforts has been thus dedicated to the automation of construction-related activities and visualization of the construction process. The purpose of this study is to investigate potential research opportunities in the integration of deep learning and XR technologies in construction engineering and management.

Design/methodology/approach

This study presents a literature review of 164 research articles published in Scopus from 2006 to 2021, based on strict data acquisition criteria. A mixed review method, consisting of a scientometric analysis and systematic review, is conducted in this study to identify research gaps and propose future research directions.

Findings

The proposed research directions can be categorized into four areas, including realism of training simulations; integration of visual and audio-based classification; automated hazard detection in head-mounted displays (HMDs); and context awareness in HMDs.

Originality/value

This study contributes to the body of knowledge by identifying the necessity of integrating deep learning and XR technologies in facilitating the construction engineering and management process.

Article
Publication date: 9 July 2021

Anish Banerjee and R. Ramesh Nayaka

The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation…

Abstract

Purpose

The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation of those against deciding parameters pertaining to their characteristics and subsequent applications in construction industry.

Design/methodology/approach

This paper identifies BIM-integrated cyber physical system frameworks, specific to project objectives, comprising of sensors working as physical assets and BIM-based virtual models acting as the cyber component , connected via wired or wireless protocols (e.g. WiFi, Zigbee, near-field communication, mobile-to-mobile, Zwave, 3 G, 4 G, long-term evolution, 5 G and low-power wide-area networks) and their potential applications in decision-making, visual management, logistics and supply chain management, smart building system management and structural performance assessment, etc. Such proposed architectures are evaluated against deciding parameters such as availability, reliability, mobility, performance, management, scalability, interoperability and security and privacy to evaluate their respective efficiencies.

Findings

This study finds that the underlying aim of planned IoT frameworks is to integrate systems and processes for a better information flow and to initiate shift from silo solutions to a smart ecosystem. The efficiencies of such frameworks are completely subjective to their respective project natures, objectives and requirements.

Originality/value

This study is unique in its nature to identify requirements of an efficient BIM-integrated IoT architecture and provide comprehensive insights about potential applications in construction industry.

Article
Publication date: 21 March 2023

Anton Klarin and Qijie Xiao

Many economic, political and socio-cultural events in the 2020s have been strong headwinds for architecture, engineering and construction (AEC). Nevertheless, technological…

Abstract

Purpose

Many economic, political and socio-cultural events in the 2020s have been strong headwinds for architecture, engineering and construction (AEC). Nevertheless, technological advancements (e.g. artificial intelligence (AI), big data and robotics) provide promising avenues for the development of AEC. This study aims to map the state of the literature on automation in AEC and thereby be of value not only to those researching automation and its composition of a variety of distinct technological and system classes within AEC, but also to practitioners and policymakers in shaping the future of AEC.

Design/methodology/approach

This review adopts scientometric methods, which have been effective in the research of large intra and interdisciplinary domains in the past decades. The full dataset consists of 1,871 articles on automation in AEC.

Findings

This overarching scientometric review offers three interdisciplinary streams of research: technological frontiers, project monitoring and applied research in AEC. To support the scientometric analysis, the authors offer a critical integrative review of the literature to proffer a multilevel, multistage framework of automation in AEC, which demonstrates an abundance of technological paradigm discussions and the inherent need for a holistic managerial approach to automation in AEC.

Originality/value

The authors underline employee well-being, business sustainability and social growth outcomes of automation and provide several managerial implications, such as the strategic management approach, ethical management view and human resource management perspective. In doing so, the authors seek to respond to the Sustainable Development Goals proposed by the United Nations as this becomes more prevalent for the industry and all levels of society in general.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Abstract

Details

Construction Innovation , vol. 22 no. 3
Type: Research Article
ISSN: 1471-4175

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 25 October 2021

Emil L. Jacobsen, Alex Solberg, Olga Golovina and Jochen Teizer

Accidents resulting from poorly planned or setup work environments are a major concern within the construction industry. While traditional education and training of personnel…

Abstract

Purpose

Accidents resulting from poorly planned or setup work environments are a major concern within the construction industry. While traditional education and training of personnel offer well-known approaches for establishing safe work practices, serious games in virtual reality (VR) are increasingly being used as a complementary approach for active learning experiences. By taking full advantage of data collection and the interactions possible in the virtual environment, the education and training of construction personnel improves by using non-biased feedback and immersion.

Design/methodology/approach

This research presents a framework for the generation and automated assessment of VR data. The proposed approach is tested and evaluated in a virtual work environment consisting of multiple hazards. VR requires expensive hardware, technical knowledge and user acceptance to run the games effectively. An effort has been made to transfer the advantages VR gives to a physical setup. This is done using a light detection and ranging sensing system, which collects similar data and enables the same learning experiences.

Findings

Encouraging results on the participants’ experiences are presented and discussed based on actual needs in the Danish construction industry. An outlook presents future avenues towards enhancing existing learning methods.

Practical implications

The proposed method will help develop active learning environments, which could lead to safer construction work stations in the future, either through VR or physical simulations.

Originality/value

The utilization of run-time data collection and automatic analysis allows for better personalized feedback in the construction safety training. Furthermore, this study investigates the possibility of transferring the benefits of this system to a physical setup that is easier to use on construction sites without investing in a full VR setup.

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-1-78635-222-4

Book part
Publication date: 2 November 2009

Sean T. Doherty

Health scientists and urban planners have long been interested in the influence that the built environment has on the physical activities in which we engage, the environmental…

Abstract

Health scientists and urban planners have long been interested in the influence that the built environment has on the physical activities in which we engage, the environmental hazards we face, the kinds of amenities we enjoy, and the resulting impacts on our health. However, it is widely recognized that the extent of this influence, and the specific cause-and-effect relationships that exist, are still relatively unclear. Recent reviews highlight the need for more individual-level data on daily activities (especially physical activity) over long periods of time linked spatially to real-world characteristics of the built environment in diverse settings, along with a wide range of personal mediating variables. While capturing objective data on the built environment has benefited from wide-scale availability of detailed land use and transport network databases, the same cannot be said of human activity. A more diverse history of data collection methods exists for such activity and continues to evolve owing to a variety of quickly emerging wearable sensor technologies. At present, no “gold standard” method has emerged for assessing physical activity type and intensity under the real-world conditions of the built environment; in fact, most methods have barely been tested outside of the laboratory, and those that have tend to experience significant drops in accuracy and reliability. This paper provides a review of these diverse methods and emerging technologies, including biochemical, self-report, direct observation, passive motion detection, and integrated approaches. Based on this review and current needs, an integrated three-tiered methodology is proposed, including: (1) passive location tracking (e.g., using global positioning systems); (2) passive motion/biometric tracking (e.g., using accelerometers); and (3) limited self-reporting (e.g., using prompted recall diaries). Key development issues are highlighted, including the need for proper validation and automated activity-detection algorithms. The paper ends with a look at some of the key lessons learned and new opportunities that have emerged at the crossroads of urban studies and health sciences.

We do have a vision for a world in which people can walk to shops, school, friends' homes, or transit stations; in which they can mingle with their neighbors and admire trees, plants, and waterways; in which the air and water are clean; and in which there are parks and play areas for children, gathering spots for teens and the elderly, and convenient work and recreation places for the rest of us. (Frumkin, Frank, & Jackson, 2004, p. xvii)

Details

Transport Survey Methods
Type: Book
ISBN: 978-1-84-855844-1

Open Access
Article
Publication date: 25 September 2019

Venkatesh Kodur, Puneet Kumar and Muhammad Masood Rafi

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims…

88887

Abstract

Purpose

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims to present a critical review of current fire protection measures and their applicability to address current challenges relating to fire hazards in buildings.

Design/methodology/approach

To overcome fire hazards in buildings, impact of fire hazards is also reviewed to set the context for fire protection measures. Based on the review, an integrated framework for mitigation of fire hazards is proposed. The proposed framework involves enhancement of fire safety in four key areas: fire protection features in buildings, regulation and enforcement, consumer awareness and technology and resources advancement. Detailed strategies on improving fire safety in buildings in these four key areas are presented, and future research and training needs are identified.

Findings

Current fire protection measures lead to an unquantified level of fire safety in buildings, provide minimal strategies to mitigate fire hazard and do not account for contemporary fire hazard issues. Implementing key measures that include reliable fire protection systems, proper regulation and enforcement of building code provisions, enhancement of public awareness and proper use of technology and resources is key to mitigating fire hazard in buildings. Major research and training required to improve fire safety in buildings include developing cost-effective fire suppression systems and rational fire design approaches, characterizing new materials and developing performance-based codes.

Practical implications

The proposed framework encompasses both prevention and management of fire hazard. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified, and detailed strategies are provided to address these limitations using proposed fire safety framework.

Social implications

Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property and environment. The proposed framework has social implications as it addresses some of the current challenges relating to fire hazard in buildings and will enhance overall fire safety.

Originality/value

The novelty of proposed framework lies in encompassing both prevention and management of fire hazard. This is unlike current fire safety improvement strategies, which focus only on improving fire protection features in buildings (i.e. managing impact of fire hazard) using performance-based codes. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified and detailed strategies are provided to address these limitations using proposed fire safety framework. Special emphasis is given to cost-effectiveness of proposed strategies, and research and training needs for further enhancing building fire safety are identified.

Details

PSU Research Review, vol. 4 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

1 – 10 of 934