Search results

1 – 10 of 330
Article
Publication date: 19 May 2021

Nanshan Wang, Heng Liu and Yi Liu

The purpose of this study is to develop a normal contact stiffness (NCS) model among three disks of the assembled rotor system, which systematically considers the friction…

Abstract

Purpose

The purpose of this study is to develop a normal contact stiffness (NCS) model among three disks of the assembled rotor system, which systematically considers the friction coefficient, the asperities interaction and the elastoplastic contact regime.

Design/methodology/approach

Based on the revised fractal theory, considering the friction effect, the elastoplastic contact regime and the asperities interaction in a simple way, the total NCS among three disks of the rod-fastening rotor bearing system is established. Effects of fractal dimension and roughness, friction coefficient, asperities interaction and material properties on the normal stiffness are investigated by simulations and the relevant comparisons are given for examining the reasonability of the proposed model.

Findings

NCS will decrease when asperities interaction and friction are included. As the load increases, the influences of asperities interaction and friction on stiffness become serious. NCS will be enhanced when the elastoplastic regime is considered.

Originality/value

A comprehensive NCS model is developed. It provides a theoretical basis for the modeling of the NCS for multi-interfaces.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 October 2019

Hongping Yang, Xiaowei Che and Cheng Yang

This paper aims to propose a normal and tangential contact stiffness model to investigate the contact characteristics between rough surfaces of machined joints based on fractal…

Abstract

Purpose

This paper aims to propose a normal and tangential contact stiffness model to investigate the contact characteristics between rough surfaces of machined joints based on fractal geometry and contact mechanics theory considering surface asperities interaction.

Design/methodology/approach

The fractal geometry theory describes surface topography and Hertz contact theory derives the asperities elastic, elastic-plastic and plastic contact deformation. The joint normal and tangential contact stiffness are obtained. The experiment method for normal and tangential contact stiffness are introduced.

Findings

The relationship between dimensionless normal contact load and dimensionless normal and tangential contact stiffness are analyzed in different plasticity index. The results show that they are nonlinear relationships. The normal and tangential contact stiffness are obtained based on theoretical and experimental methods for milling and grinding machined specimens. The results indicate that the present model for the normal and tangential contact stiffness are consistent with experimental data, respectively.

Originality/value

The normal and tangential contact stiffness models are constructed by using the fractal geometry and the contact mechanics theory considering surface asperities interaction, which includes fully elastic, elastic-plastic and fully plastic contacts deformation. The present method can generate a more reliable calculation result as compared with the contact model no-considering asperities interaction.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2019

Hongxu Chen, Qin Yin, Guanhua Dong, Luofeng Xie and Guofu Yin

The purpose of this paper is to establish a stiffness model of fixed joint considering self-affinity and elastoplasticity of asperities.

Abstract

Purpose

The purpose of this paper is to establish a stiffness model of fixed joint considering self-affinity and elastoplasticity of asperities.

Design/methodology/approach

The proposed model considers that asperities of different scales are interrelated rather than independent. For elastoplastic contact, a spring-damper model and an elastic deformation ratio function were proposed to calculate the contact stiffness of asperities.

Findings

A revised fractal asperity model was proposed to calculate the contact stiffness of fixed joint, the impacts of the fractal dimension, the fractal roughness parameter and the Meyer index on the contact stiffness were discussed, and the present experimental results and the Jiang’s experimental results showed that the stiffness can be well predicted by proposed model.

Originality/value

The contradiction between the Majumdar and Bhushan model and the Morag and Etsion model can be well explained by considering the interaction among asperities of different scales. For elastoplastic contact, elastic deformation ratio should be considered, and the stiffness of asperities increases first and then decreases with the increasing of interference.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 November 2018

Xiaogang Zhang and Yali Zhang

This study aims to investigate the sliding friction behaviour and mechanism of engineering surfaces.

Abstract

Purpose

This study aims to investigate the sliding friction behaviour and mechanism of engineering surfaces.

Design/methodology/approach

A new numerical approach is proposed. This approach derives the macroscale friction coefficient from microscale asperity interactions. By applying this approach, the sliding friction behaviour under different operating conditions were investigated in terms of molecular and mechanical components.

Findings

Numerical results demonstrate an independent relationship between normal load and friction coefficient, which is governed by the saturated plastic ratio. Numerical results also demonstrate that under very small load, an increase in load increases the friction coefficient. In addition, numerical results confirm the existence of optimal surface roughness where the friction coefficient is the lowest. For the surface profiles used in the current calculation, an optimal surface roughness value is obtained as Rq = 0.125 μm.

Originality/value

This new approach characterizes the deterministic relationship between macroscale friction coefficient and microscale asperity molecular/mechanical interactions. Numerical results facilitate the understanding of sliding friction mechanism.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 January 2017

Anastasios Zavos and Pantelis Nikolakopoulos

Compression rings are the main sources of frictional losses in internal combustion engines. The present paper aims to present a thermo-mixed hydrodynamic analysis for coated top…

Abstract

Purpose

Compression rings are the main sources of frictional losses in internal combustion engines. The present paper aims to present a thermo-mixed hydrodynamic analysis for coated top compression rings. To understand the coating effects, the main tribological parameters are investigated into a ring-cylinder conjunction in a motorbike engine. Furthermore, flow simulations have been carried out on how different worn profiles on the cylinder inner liner affects friction, lubricant film and localized contact deformation of the coated compression rings.

Design/methodology/approach

In this paper, the basic geometrical dimensions of the top compression ring-cylinder system are obtained from a real motorbike engine. A 2D axisymmetric CFD/FLOTRAN model is created for coated compression rings. Flow simulations are performed by solving the Navier-Stokes and the energy equations. The load capacity of the asperities is also taken into account by Greenwood and Tripp contact model. Realistic boundary conditions are imposed to simulate the in-plane ring motion. The simulation model is validated with analytical and experimental data from the literature. Under thermal considerations, the contribution of worn cylinder profiles in conjunction with different coated compression rings is presented.

Findings

This research shows that because of thermal effects, the boundary friction is higher at reversals and the viscous friction is lower because of reduced oil viscosity. As regards to the isothermal case, the viscous friction is greater because of a higher lubricant viscosity. In the case of chromium-plated ring, boundary friction was 16 per cent lower than a grey cast iron ring taking into account thermal effects. Regarding the localized contact deformation, the coated compression rings showed lower values under different worn cylinder shapes. In particular, hard wear-resistant (Ni-Cr-Mo) coating showed the slighter local deformation. Therefore, the worn cylinder profiles promote boundary/mixed lubrication regime, whereas the lobed profile of cylinder inner liner becomes more wavy.

Originality/value

The solution of the thermo-mixed lubrication model, concerning the piston ring and worn cylinder tribo pair by taking into account the coating of the top compression ring.

Details

Industrial Lubrication and Tribology, vol. 69 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 March 2018

Xi Shi and Yunwu Zou

The explicit finite element method (FEM) is one of the most popular approaches in quasi-static contact analysis which involves highly nonlinear friction and large deformation…

Abstract

Purpose

The explicit finite element method (FEM) is one of the most popular approaches in quasi-static contact analysis which involves highly nonlinear friction and large deformation. Usually, a high loading rate is expected to improve computation efficiency in FEM. However, a higher loading rate often results in significant dynamic effects in the simulations. This study aims to propose a new criterion to achieve a good balance between a high loading rate and minimal dynamic effects.

Design/methodology/approach

The proposed criterion is based on the fluctuation of total strain energy as well as the smoothness of its first derivative to determine the proper loading time with an acceptable level of dynamic effect.

Findings

Asperities’ sliding contact and Hertz contact problems have been solved with the proposed criterion to verify its validity. The simulations show that the computation efficiency with the proposed criterion can be improved by up to 80 per cent compared to the regular energy ratio criterion.

Originality/value

This criterion will provide a valuable tool in determining the proper loading time to improve the computation efficiency for quasi-static analysis of asperities’ contacts.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2012

Osama M. Abuzeid

The purpose of this paper is to construct a continuous time series model to study the thermal creep of rough surfaces in contact.

Abstract

Purpose

The purpose of this paper is to construct a continuous time series model to study the thermal creep of rough surfaces in contact.

Design/methodology/approach

For normal loading, the contact between rough surfaces can often be modeled as the contact of an effective surface with a rigid fiat surface. A solution for the deformation of such equivalent surface, generated using fractal geometry, can be modified. However, in this study only the case of a single rough surface in contact with a rigid flat surface is considered. In the interface, the material is assumed to follow the idealized constitutive viscoelastic standard linear solid (SLS) model. Fractal geometry, through Cantor set theory, is utilized to model the roughness of the surface.

Findings

An asymptotic time series power law is obtained, which associates the creep load, the buck temperature and the creep of the fractal surface.

Originality/value

This law is only valid as long as the creep is of the size of the surface roughness. The modified model admits an analytical solution for the case when the behavior is linear viscoelastic. The proposed model shows a good agreement when compared with experimental results available in the literature.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Sonia Patricia Brühl, Amado Cabo, Walter Tuckart and Germán Prieto

The purpose of this study is to select a proper surface treatment to enhance wear resistance of engine camshafts. The camshaft is a relevant part of a diesel engine which works…

Abstract

Purpose

The purpose of this study is to select a proper surface treatment to enhance wear resistance of engine camshafts. The camshaft is a relevant part of a diesel engine which works under torsion, fatigue and wear efforts. They are usually manufactured by casting, forging or machining from forged bar of low alloy steels, and in most cases, the machined surfaces are quenched and tempered by induction heating. After that, in many cases, to withstand the efforts imposed on the active surfaces and improve tribology and fatigue properties, the industry used for decades, thermochemical technologies such as salt bath or gaseous nitriding and nitrocarburizing processes.

Design/methodology/approach

This paper studied the effects of plasma nitriding and plasma nitrocarburizing, on the tribological behaviour of the steel SAE 1045HM3 proposed to produce camshafts. After the plasma treatments, the change in surface roughness was measured; the modified layers were studied by X-ray techniques and its thickness by optical microscopy. The diffusion zone was evaluated by Vickers microhardness determinations. Tribology tests were performed by pin-on-disc configuration using WC ball as a counterpart.

Findings

Results show that plasma nitrided samples present the best tribological behaviour compared with the nitrocarburized ones; also, the influence of the roughness produced by the thermochemical processes appears to be important.

Practical implications

Although both the plasma treatments have been applied for many years, and also reported separately in the scientific literature, there was no information comparing these two treatments for carbon steels, and also, there is not much about tribology in lubricated conditions of nitrided and nitrocarburized carbon steels. In fact, it is not proved that the porosity of the nitrocarburized layer is beneficial for wear resistance in lubricated conditions. In this paper, it was proved that at least in the tested conditions, it is not.

Originality/value

Gas or plasma nitrocarburizing is usually recommended for this kind of applications, although the modified layer is porous. This paper attempts to prove that nitriding could be better than nitrocarburizing, even with a thinner white layer.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 September 2013

Osama M. Abuzeida and Nasim Alnumanb

– This work aims at constructing a continuous mathematical, linear elastic, model for the thermal contact conductance (TCC) of two rough surfaces in contact.

Abstract

Purpose

This work aims at constructing a continuous mathematical, linear elastic, model for the thermal contact conductance (TCC) of two rough surfaces in contact.

Design/methodology/approach

The rough surfaces, known to be physical fractal, are modelled using a deterministic Cantor structure. Such structure shows several levels of imperfections and including, therefore, several scales in the constriction of the flux lines. The proposed model will study the effect of the deformation (approach) of the two rough surfaces on the TCC as a function of the remotely applied load.

Findings

An asymptotic power law, derived using approximate iterative relations, is used to express the area of contact and, consequently, the thermal conductance as a function of the applied load. The model is valid only when the approach of the two surface in contact is of the order of the surface roughness. The results obtained using this model, which admits closed form solution, are displayed graphically for selected values of the system parameters; the fractal surface roughness and various material properties. The obtained results showed good agreement with published experimental results both in trend and the numerical values.

Originality/value

The model obtained provides further insight into the effect that surface texture has on the heat conductance process. The proposed model could be used to conduct an analytical investigation of the thermal conductance of rough surfaces in contact. This model, although simple (composed of springs), nevertheless works well.

Article
Publication date: 18 October 2019

Chunxing Gu and Shuwen Wang

Surface coatings have been introduced on the contact surfaces to protect the mechanical parts for a long time. However, in terms of the optimum design of coatings, some key…

Abstract

Purpose

Surface coatings have been introduced on the contact surfaces to protect the mechanical parts for a long time. However, in terms of the optimum design of coatings, some key coating parameters are still selected by trial and error. The optimum design of coatings can be conducted by numerical experiments. This paper aims to predict the contact behavior of the coated rough surfaces accurately. One improved asperity contact model for the coated rough surfaces considering the misalignment of asperities would be developed.

Design/methodology/approach

Incorporating the coated asperity contact model into the improved Greenwood Tripp-based statistical approach, the proposed model can predict the elastic-plastic behaviors of the interacting coated asperities.

Findings

According to numerical experiments, compared with the coated asperity contact model in which an equivalent rough surface against a plane is assumed, the improved asperity contact model for the coated contacts can account for the effect of permitting misalignment of two rough surfaces. The contacts having the thicker, stiffer and harder coatings result in higher asperity contact pressure and smaller real contact area fraction under the given Stribeck oil film ratio.

Originality/value

In this paper, one statistical coated asperity contact model for two rough surfaces was developed. The developed model can consider the elastic-plastic behavior of interacting coated asperities. The effects of the coating thickness and its mechanical properties on the contact behavior of the rough surfaces with coatings can be evaluated based on the developed model.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 330