Search results

1 – 10 of over 4000
Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 November 2023

Funda Baş Bütüner, Aysem Berrin Cakmakli, Ahmet Can Karakadilar and Esra Deniz

This article explores the impacts of the changing land-use on urban heat island (UHI) in an urban transformation zone in Ankara (Türkiye). Identifying a characteristic rural…

Abstract

Purpose

This article explores the impacts of the changing land-use on urban heat island (UHI) in an urban transformation zone in Ankara (Türkiye). Identifying a characteristic rural landscape until the 1950s, the study area experienced a drastic land-use change by razing the fertile landscape of the city and replacing it with a sealed surface. Development of the squatter houses after the 1960s and, subsequently, the implementation of a new housing morphology have introduced new sceneries, scales and surface conditions that make the study area a noteworthy case to analyze.

Design/methodology/approach

Regarding the drastic spatio-temporal change of the study area, this research assesses the impacts of the changing land-use on UHI based on three periods. Using 1957, 1991 and 2021 aerial imaginaries and maps, it analyzes the temperature alteration caused by the changing land-use. To do so, different surface types, green patterns and built-up areas have been modeled using Ankara climatic data and transferred to ENVI-Met to calculate the Universal Thermal Climate Index (UTCI) values.

Findings

The calculation has been developed over a transect covering an area of 40 m × 170 m, which includes diversity in terms of architecture, landscape and open space elements. To encourage future design strategies, the research findings deliberate into three extents that discuss the lacking climate knowledge in the ongoing urban transformation projects: impervious surface ratio and regional albedo variation, changing aspect ratio and temperature variation at the pedestrian level.

Originality/value

Urban transformation projects, being countrywide operations in Türkiye, need to cover climate-informed design strategies. Herein, the article underlines the critical position of design decisions in forming a climate-informed urban environment. Dwelling on a typical model of housing transformation in Türkiye, the research could trigger climate-informed urban development strategies in the country.

Details

Open House International, vol. 49 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 5 August 2024

Yash G. Mittal, Yogesh Patil, Pushkar Prakash Kamble, Gopal Dnyanba Gote, Avinash Kumar Mehta and K.P. Karunakaran

Additive manufacturing (AM) is a layer-by-layer technique that helps to create physical objects from a three-dimensional data set. Fused deposition modeling is a widely used…

Abstract

Purpose

Additive manufacturing (AM) is a layer-by-layer technique that helps to create physical objects from a three-dimensional data set. Fused deposition modeling is a widely used material extrusion (MEX)-based AM technique that melts thermoplastic filaments and selectively deposits them over a build platform. Despite its simplicity and affordability, it suffers from various printing defects, with partial warping being a prevalent issue. Warpage is a physical deformation caused by thermal strain incompatibility that results in the bending of the printed part away from the build platform. This study aims to investigate the warpage characteristics of printed parts based on geometrical parameters and build orientations to reduce the warpage extent.

Design/methodology/approach

Cuboidal samples of thermoplastic acrylonitrile butadiene styrene ranging from 5 to 80 mm were printed using a commercial MEX system. A Taguchi method-based design of experiment trial was performed to optimize the placement and orientation of the part for minimal warpage.

Findings

It was found that a lower value of the “in-plane” aspect ratio and a more prominent part thickness are favorable for minimal warpage. The part should always be placed near the region with the highest temperature (least thermal gradient) to minimize the warpage.

Originality/value

A novel dimensionless parameter (Y) is proposed that should be set to a minimum value to achieve minimal warpage. The results of this study can help improve the design and part placement for the MEX technique, thus elevating the print quality.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 May 2024

Kavimani V., Kumaran S., Vignesh Ponnusamy and Navneet Kumar

This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.

Abstract

Purpose

This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.

Design/methodology/approach

Graphene reinforced composite was developed by using stir casting route and rolled with different reduction in thickness such as 50, 75 and 90%. Microstructure, hardness and tensile characteristics of the rolled samples were evaluated.

Findings

Investigation on microstructures of rolled composite depicts that increase in rolling reduction % resulted in fine elongated grains and decreased aspect ratio. Further, it was also observed that increasing percentage of rolling reduction promotes the dissolution of ß Li phase and as a result the ductility of composite decreases. Interrupted rolled samples showcase higher hardness when compared with as-cast composite. Composite rolled with 90% reduction displays higher yield strength of 219 MPa. Hardening capacity of composites decreases with increase in reduction percentage due to the effective reduction in grain size.

Originality/value

Investigation on the influence of interrupted rolling on microstructures and mechanical properties of Mg graphene composite. The in-depth understanding of this will help to improve its wide spread application.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 May 2024

Tasneem Firdous Islam and G.D. Kedar

This paper aims to contribute novel insights into the analysis of thin functionally graded material (FGM) plates with variable thickness, considering both temperature-dependent…

Abstract

Purpose

This paper aims to contribute novel insights into the analysis of thin functionally graded material (FGM) plates with variable thickness, considering both temperature-dependent and independent material properties, focusing on critical linear buckling temperature rise and the effect of critical linear moisture for various moisture concentrations.

Design/methodology/approach

The study derives stability and equilibrium equations for thin rectangular FGM plates under hygrothermal loading, employing classical plate theory (CPT). Buckling behavior is examined using Galerkin’s method to obtain pre-buckling force resultants.

Findings

The findings highlight significant increases in critical buckling temperature with aspect ratio, distinct temperature sensitivity between materials and increasing moisture susceptibility with larger aspect ratios. These insights inform material selection and design optimization for FGM plates under hygrothermal loading, enhancing engineering applications.

Research limitations/implications

This research primarily focuses on hypothetical scenarios and mathematical model development and analysis.

Originality/value

This paper presents original contributions in the field by addressing the hygrothermal buckling analysis of thin FGM rectangular plates with variable thickness, utilizing CPT, thereby enriching the understanding of structural behavior in varying environmental conditions.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

82

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 May 2024

Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…

Abstract

Purpose

The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.

Design/methodology/approach

Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.

Findings

For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.

Originality/value

This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 22 August 2024

Sandipan Kumar Das

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally…

Abstract

Purpose

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally inexpensive compared to its peers. The principal feature of this technique is the limitation of all its computations to only the boundaries of the domain. Although the procedure is well developed for the Laplace equation, the Poisson equation offers some computational challenges. Nevertheless, the literature provides a couple of solution methods. This paper revisits an alternate approach that has not gained much traction within the community. The purpose of this paper is to address the main bottleneck of that approach in an effort to popularize it and critically evaluate the errors introduced into the solution by that method.

Design/methodology/approach

The primary intent in the paper is to work on the particular solution of the Poisson equation by representing the source term through a Fourier series. The evaluation of the Fourier coefficients requires a rectangular domain even though the original domain can be of any arbitrary shape. The boundary conditions for the homogeneous solution gets modified by the projection of the particular solution on the original boundaries. The paper also develops a new Gauss quadrature procedure to compute the integrals appearing in the Fourier coefficients in case they cannot be analytically evaluated.

Findings

The current endeavor has developed two different representations of the source terms. A comprehensive set of benchmark exercises has successfully demonstrated the effectiveness of both the methods, especially the second one. A subsequent detailed analysis has identified the errors emanating from an inadequate number of boundary nodes and Fourier modes, a high difference in sizes between the particular solution and the original domains and the used Gauss quadrature integration procedures. Adequate mitigation procedures were successful in suppressing each of the above errors and in improving the solution accuracy to any desired level. A comparative study with the finite difference method revealed that the BIM was as accurate as the FDM but was computationally more efficient for problems of real-life scale. A later exercise minutely analyzed the heat transfer physics for a fin after validating the simulation results with the analytical solution that was separately derived. The final set of simulations demonstrated the applicability of the method to complicated geometries.

Originality/value

First, the newly developed Gauss quadrature integration procedure can efficiently compute the integrals during evaluation of the Fourier coefficients; the current literature lacks such a tool, thereby deterring researchers to adopt this category of methods. Second, to the best of the author’s knowledge, such a comprehensive error analysis of the solution method within the BIM framework for the Poisson equation does not currently exist in the literature. This particular exercise should go a long way in increasing the confidence of the research community to venture into this category of methods for the solution of the Poisson equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2024

Renato Zona, Luca Esposito, Simone Palladino and Vincenzo Minutolo

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent…

Abstract

Purpose

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent continuum. The proposed investigation deals with the mechanical characterization of the heterogeneous material structured metamaterials through analyzing the ultimate strength using the limit analysis of the Representative Volume Element (RVE). To get the desired material strength, a novel finite element formulation based on the derivation of self-equilibrated solutions through the finite elements devoted to calculating the lower bound theorem has been implemented together with the limit analysis in Melàn’s formulation.

Design/methodology/approach

The finite element formulation is based on discrete mapping of Volterra dislocations in the structure using isoparametric representation. Using standard finite element techniques, the linear operator V, which relates the self-equilibrated internal solicitation to displacement-like nodal parameters, has been built through finite element discretization of displacement and strain.

Findings

The proposed work presented an elastic homogenization of the mechanical properties of an elementary cell with a geometry known in the literature, the isotropic truss. The matrix of elastic constants was calculated by subjecting the RVE to numerical load tests, simulated with a commercial FEM calculation code. This step showed the dependence of the isotropy properties, verified with Zener theory, on the density of the RVE. The isotropy condition of the material is only achieved for certain section ratios between body-centered cubic (BCC) and face-centered cubic (FCC), neglecting flexural effects at the nodes. The density that satisfies Zener’s conditions represents the isotropic geomatics of the isotropic truss.

Originality/value

For the isotropic case, the VFEM procedure was used to evaluate the isotropy of the limit domain and was compared with the Mises–Schleicher limit domain. The evaluation of residual ductility and dissipation energy allowed a measurement parameter for the limit anisotropy to be defined. The novelty of the proposal consisted in the formulation of both the linearized and the nonlinear limit locus of the material; hence, it furnished the starting point for further limit analysis of the structures whose elementary volume has been described through the proposed approach.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 4000