Search results

1 – 10 of 10
Article
Publication date: 20 August 2024

Nur Hidayah Musa, Nurainaa Natasya Mazlan, Shahir Mohd Yusuf, Farah Liana Binti Mohd Redzuan, Nur Azmah Nordin and Saiful Amri Mazlan

Material extrusion (ME) is a low-cost additive manufacturing (AM) technique that is capable of producing metallic components using desktop 3D printers through a three-step…

Abstract

Purpose

Material extrusion (ME) is a low-cost additive manufacturing (AM) technique that is capable of producing metallic components using desktop 3D printers through a three-step printing, debinding and sintering process to obtain fully dense metallic parts. However, research on ME AM, specifically fused filament fabrication (FFF) of 316L SS, has mainly focused on improving densification and mechanical properties during the post-printing stage; sintering parameters. Therefore, this study aims to investigate the effect of varying processing parameters during the initial printing stage, specifically nozzle temperatures, Tn (190°C–300°C) on the relative density, porosity, microstructures and microhardness of FFF 3D printed 316L SS.

Design/methodology/approach

Cube samples (25 x 25 x 25 mm) are printed via a low-cost Artillery Sidewinder X1 3D printer using a 316L SS filament comprising of metal-polymer binder mix by varying nozzle temperatures from 190 to 300°C. All samples are subjected to thermal debinding and sintering processes. The relative density of the sintered parts is determined based on the Archimedes Principle. Microscopy and analytical methods are conducted to evaluate the microstructures and phase compositions. Vickers microhardness (HV) measurements are used to assess the mechanical property. Finally, the correlation between relative density, microstructures and hardness is also reported.

Findings

The results from this study suggest a suitable temperature range of 195°C–205°C for the successful printing of 316L SS green parts with high dimensional accuracy. On the other hand, Tn = 200°C yields the highest relative density (97.6%) and highest hardness (292HV) in the sintered part, owing to the lowest porosity content (<3%) and the combination of the finest average grain size (∼47 µm) and the presence of Cr23C6 precipitates. However, increasing Tn = 205°C results in increased porosity percentage and grain coarsening, thereby reducing the HV values. Overall, these outcomes suggest that the microstructures and properties of sintered 316L SS parts fabricated by FFF AM could be significantly influenced even by adjusting the processing parameters during the initial printing stage only.

Originality/value

This paper addresses the gap by investigating the impact of initial FFF 3D printing parameters, particularly nozzle temperature, on the microstructures and physical characteristics of sintered FFF 316L SS parts. This study provides an understanding of the correlation between nozzle temperature and various factors such as dimensional integrity, densification level, microstructure and hardness of the fabricated parts.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 4 June 2024

Ludovico Martignoni, Andrea Vegro, Sara Candidori, Mohammad Qasim Shaikh, Sundar V. Atre, Serena Graziosi and Riccardo Casati

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless…

Abstract

Purpose

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless steel filament and their influence on the porosity and mechanical properties of the printed parts. It also investigates the feasibility of manufacturing complex geometries, including strut-and-node and triply periodic minimal surface lattices.

Design/methodology/approach

A three-step experimental campaign was carried out. Firstly, the printing parameters were evaluated by analysing the green parts: porosity and density measurements were used to define the best printing profile. Then, the microstructure and porosity of the sintered parts were investigated using light optical and scanning electron microscopy, while their mechanical properties were obtained through tensile tests. Finally, manufacturability limits were explored with reference samples and cellular structures having different topologies.

Findings

The choice of printing parameters drastically influences the porosity of green parts. A printing profile which enables reaching a relative density above 99% has been identified. However, voids characterise the sintered components in parallel planes at the interfaces between layers, which inevitably affect their mechanical properties. Lattice structures and complex geometries can be effectively printed, debinded, and sintered if properly dimensioned to fulfil printing constraints.

Originality/value

This study provides an extensive analysis of the printing parameters for the 316L filament used and an in-depth investigation of the potential of the metal fused filament fabrication technology in printing lightweight structures.

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 12 September 2024

Nandalal Acharjee, Subhas Ganguly, Prasenjit Biswas and Bidyapati Sarangi

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has…

Abstract

Purpose

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has explored black pigmented calcium aluminosilicate glass (BPCG), a specialized material known for its unique properties, which holds promise for transforming the color capabilities of traditional ceramics.

Design/methodology/approach

In this investigation, initially composite ceramic sample (B-1) was prepared by milling process prior to sieve analysis to attain the particle size within 44 microns. Microanalysis and morphology and thermography were studied by energy-dispersive X-ray spectroscopy, scanning electron microscope and thermogravimetric analysis and found Sample-B-1 received attractive properties like firing shrinkage, porosity, bulk density and firing strength along with good pyro-plastic properties at various temperatures like 950°C, 1050°C, 1000°C and 1180°C. Furthermore, BPCG-assisted pigmented ceramic composites were synthesized with B-1 matrix. CIE lab investigation of the attributed composites (C-series) within selective soaking range of 5–20 min was performed, and the investigation found that prominent black hue appeared (L: 24.09, a*: −0.17, b*: −0.49) for C-10 containing appeared phases of Di-Co-Silicide (26%), Ni-Chromite, Stilpnomelane (rich in iron) as obtained by X-ray diffraction studies.

Findings

Ceramic material played a significant role in the realms of art and craft, as well as in technology. The artistic facet reveals concepts or ornamentation, while the craft echoes both traditional and functional appeal. Technology, on the other hand, involves the logical implementation behind the creation.

Originality/value

This C-10 Sample comprised the lower percentage of mullite which attributed that the BPCG homogeneously mixed in the matrix of base (B-1) and appeared as spinal staff. Therefore, BPCG was a potential candidate for ceramic metallization, and this traditional metallization processes often faced some challenges like uniformity and mixing in the ceramic composite domain practices. This study aimed to open up new avenues for artistic decoration and bridging the gap between traditional craftsmanship and modern technology. Furthermore, BPCG’s role in color assessment through shocking techniques added an exciting concept for the ceramic practitioners, designers or ceramic educators.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2024

Wei Chen, Yucheng Ma, Xingyu Liu, Enguang Xu, Wenlong Yang, Junhong Jia, Rui Lou, Chaolong Zhu, Chenjing Wu and Ziqiang Zhao

The purpose of this paper is to improve the mechanical and tribological properties of Si3N4 ceramics and to make the application of Si3N4 ceramics as tribological materials more…

Abstract

Purpose

The purpose of this paper is to improve the mechanical and tribological properties of Si3N4 ceramics and to make the application of Si3N4 ceramics as tribological materials more extensive.

Design/methodology/approach

Si3N4-based composite ceramics (SN-2L) containing nitrogen-doped graphene quantum dots (N-GQDs) were prepared by hot press sintering process through adding 2 Wt.% nanolignin as precursor to the Si3N4 matrix, and the dry friction and wear behaviors of Si3N4-based composite against TC4 disc were performed at the different loads by using pin-on-disc tester.

Findings

The friction coefficients and wear rates of SN-2L composite against TC4 were significantly lower than those of the single-phase Si3N4 against TC4 at the load range from 15 to 45 N. At higher load of 45 N, SN-2L/TC4 pair presented the lowest friction coefficient of 0.25, and the wear rates of the pins and discs were as low as 1.76 × 10−6 and 2.59 × 10−4mm3/N·m. The low friction and wear behavior could be attributed to the detachment of N-GQDs from the ceramic matrix to the worn surface at the load of 30 N or higher, and then an effective lubricating film containing N-GQDs, SiO2, TiO2 and Al2SiO5 formed in the worn surface. While, at the same test condition, the friction coefficient of the single-phase Si3N4 against TC4 was at a range from 0.45 to 0.58. The spalling and cracking morphology formed on the worn surface of single-phase Si3N4, and the wear mechanism was mainly dominated by adhesive and abrasive wear.

Originality/value

Overall, a high-performance green ceramic composite was prepared, and the composite had a good potential for application in engineering tribology fields (such as aerospace bearings).

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0161/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 10 June 2024

Julian N. Marewski, Konstantinos V. Katsikopoulos and Simone Guercini

Are there smart ways to find heuristics? What are the common principles behind heuristics? We propose an integrative definition of heuristics, based on insights that apply to all…

Abstract

Purpose

Are there smart ways to find heuristics? What are the common principles behind heuristics? We propose an integrative definition of heuristics, based on insights that apply to all heuristics, and put forward meta-heuristics for discovering heuristics.

Design/methodology/approach

We employ Herbert Simon’s metaphor that human behavior is shaped by the scissors of the mind and its environment. We present heuristics from different domains and multiple sources, including scholarly literature, practitioner-reports and ancient texts.

Findings

Heuristics are simple, actionable principles for behavior that can take different forms, including that of computational algorithms and qualitative rules-of-thumb, cast into proverbs or folk-wisdom. We introduce heuristics for tasks ranging from management to writing and warfare. We report 13 meta-heuristics for discovering new heuristics and identify four principles behind them and all other heuristics: Those principles concern the (1) plurality, (2) correspondence, (3) connectedness of heuristics and environments and (4) the interdisciplinary nature of the scissors’ blades with respect to research fields and methodology.

Originality/value

We take a fresh look at Simon’s scissors-metaphor and employ it to derive an integrative perspective that includes a study of meta-heuristics.

Details

Management Decision, vol. 62 no. 13
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 September 2024

Indrajeet Katti, Alistair Jones, Matthias Weiss, Dong Qiu, Joy H. Forsmark and Mark Easton

Powder bed fusion-laser beam (PBF-LB) is a rapidly growing manufacturing technology for producing Al-Si alloys. This technology can be used to produce high-pressure die-casting…

Abstract

Purpose

Powder bed fusion-laser beam (PBF-LB) is a rapidly growing manufacturing technology for producing Al-Si alloys. This technology can be used to produce high-pressure die-casting (HPDC) prototypes. The purpose of this paper is to understand the similarities and differences in the microstructures and properties of PBF-LB and HPDC alloys.

Design/methodology/approach

PBF-LB AlSi10Mg and HPDC AlSi10Mn plates with different thicknesses were manufactured. Iso-thermal heat treatment was conducted on PBF-LB bending plates. A detailed meso-micro-nanostructure analysis was performed. Tensile, bending and microhardness tests were conducted on both alloys.

Findings

The PBF-LB skin was highly textured and softer than its core, opposite to what is observed in the HPDC alloy. Increasing sample thickness increased the bulk strength for the PBF-LB alloy, contrasting with the decrease for the HPDC alloy. In addition, the tolerance to fracture initiation during bending deformation is greater for the HPDC material, probably due to its stronger skin region.

Practical implications

This knowledge is crucial to understand how geometry of parts may affect the properties of PBF-LB components. In particular, understanding the role of geometry is important when using PBF-LB as a HPDC prototype.

Originality/value

This is the first comprehensive meso-micro-nanostructure comparison of both PBF-LB and HPDC alloys from the millimetre to nanometre scale reported to date that also considers variations in the skin versus core microstructure and mechanical properties.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 September 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study examines how different stacking sequences of bamboo and flax fibers, treated with 5% aqueous sodium hydroxide (NaOH) and filled with 6wt% titanium oxide (TiO2), affect…

Abstract

Purpose

This study examines how different stacking sequences of bamboo and flax fibers, treated with 5% aqueous sodium hydroxide (NaOH) and filled with 6wt% titanium oxide (TiO2), affect the physical, mechanical and dry sliding wear resistance properties of a hybrid composite.

Design/methodology/approach

Composites with different fiber stacking arrangements were developed and tested per American Society for Testing and Materials (ASTM) standards to evaluate physical, mechanical and wear resistance properties, focusing on the impact of flax fiber mats at intermediate and outer layers.

Findings

The hybrid composite significantly outperformed composites reinforced solely with bamboo fibers, showing a 65.95% increase in tensile strength, a 53.29% boost in flexural strength and a 91.01% improvement in impact strength. The configuration with multiple layers of flax fiber mat at intermediate and outer levels also demonstrated superior wear resistance.

Originality/value

This study highlights the critical role of stacking order in optimizing the mechanical properties and wear resistance of hybrid composites. The findings provide valuable insights for the design and application of advanced composite materials, particularly in industries requiring high performance and durability.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

1 – 10 of 10