Search results

1 – 10 of 311
Article
Publication date: 8 July 2024

Varun Sabu Sam, N. Anand, Rakesh Kumar and Diana Andrushia

Cold-formed steel (CFS) sections are a popular choice for constructing medium and low-rise structures that are engineered to support relatively light loads. An important…

Abstract

Purpose

Cold-formed steel (CFS) sections are a popular choice for constructing medium and low-rise structures that are engineered to support relatively light loads. An important characteristic of CFS sections is that they are produced without the use of heat during manufacturing. Consequently, it becomes essential to gain a comprehensive understanding in the behavior of CFS sections when exposed to fire or elevated temperatures.

Design/methodology/approach

In this study, sections of 1.5 m length and 2 mm thickness were taken and analyzed to find its flexural behavior after heating them for 60 and 90 min. There were two modes of cooling phase which was considered to reach ambient temperature, i.e. air or water respectively. Performance of each sections (C, C with inclined flanges, sigma and Zed) were examined and evaluated at different conditions. Effects of different profiles and lips in the profiles on flexural behavior of CFS sections were investigated fully analytically.

Findings

The variation in stiffness among the sections with different lipped profiles was noted between 20.36 and 33.26%, for 60 min water cooling case. For the sections with unlipped profiles, it was between 23.56 and 28.60%. Influence of lip and section profile on reduction in stiffness is marginal. The average reduction in load capacity of sections for 60 min specimens cooled by water was found to be 43.42%. An increase in deflection is observed for the sections in the range of 25–37.23% for 60 min case. This is the critical temperature responsible for reduction in yield strength of material as it substantially increases the material safety margin to be considered for the design. Sections with Zed profile have shown better performance among other types, in terms of its load carrying capacity.

Originality/value

This paper deals with the flexural behavior of Galvanized (GI) based CFS unsymmetric sections at elevated temperature and cooled down to ambient temperature with air or water.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 August 2024

Balamurali Kanagaraj, N. Anand, Mathew Thomas and Chin Siew Choo

The development of high-strength engineered cementitious composite (ECC) gains a significant leap in structural engineering. Engineers have been looking for new formulations that…

Abstract

Purpose

The development of high-strength engineered cementitious composite (ECC) gains a significant leap in structural engineering. Engineers have been looking for new formulations that combine outstanding compressive strength with increased flexural resistance. This research focuses on the main characteristics, techniques and prospective applications of high-strength ECC. The proposed work explores the composition of such concrete, emphasizing the use of novel additives, fiber reinforcements and optimal particle packing to produce excellent mechanical characteristics and demonstrating how high-strength ECC contributes to incorporate sustainability by potentially lowering the need for supplemental reinforcing and resulting in a lower environmental effect.

Design/methodology/approach

This research involves on studying the composition of high-strength ECC and geopolymer-based ECC, the use of novel additives, fiber reinforcements and optimal particle packing. It examines the capacity of high-strength ECC to sustain high loads with an allowable deformation without any catastrophic collapse. It discusses the sustainability aspects of high-strength ECC and its potential alternative as geopolymer-based ECC.

Findings

High-strength ECC offers an excellent compressive strength while also providing increased flexural capacity. Employment of copper slag (CS) as a filler material for the production of ECC results in 28.92% lower cost, when compared to the mix developed using conventional river sand. Whereas in the case of geopolymer-based ECC, the cost of production was found to be 31.92% lower than that of the conventional.

Originality/value

High-strength ECC is developed using conventional river sand and industrial by-product, CS as a filler material. The combination of achieving higher compressive strength with an increased use of industrial by-products leads to the development of sustainable high strength ECC. The potential use of high-strength ECC reduces the need for supplementary reinforcing and increases the structural lifetime, resulting in a lower environmental impact.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Arushi Jain

This study empirically demonstrates a contradiction between pillar 3 of Basel norms III and the designation of Systemically Important Banks (SIBs), also known as Too Big to Fail…

Abstract

Purpose

This study empirically demonstrates a contradiction between pillar 3 of Basel norms III and the designation of Systemically Important Banks (SIBs), also known as Too Big to Fail (TBTF). The objective of this study is threefold, which has been approached in a phased manner. The first is to determine the systemic importance of the banks under study; second, to examine if market discipline exists at different levels of systemic importance of banks and lastly, to examine if the strength of market discipline varies at different levels of systemic importance.

Design/methodology/approach

This study is based on all the public and private sector banks operating in the Indian banking sector. The Gaussian Mixture Model algorithm has been utilized to classify banks into distinct levels of systemic importance. Thereafter, market discipline has been observed by analyzing depositors' sentiments toward banks' risk (CAMEL indicators). The analysis has been performed by employing the system Generalized Method of Moments (GMM) to estimate models with different dependent variables.

Findings

The findings affirm the existence of market discipline across all levels of systemic importance. However, the strength of market discipline varies with the systemic importance of the banks, with weak market discipline being a negative externality of the SIBs designation.

Originality/value

By employing the Gaussian Mixture Model algorithm to develop a framework for categorizing banks on the basis of their systemic importance, this study is the first to go beyond the conventional method as outlined by the Reserve Bank of India (RBI).

Book part
Publication date: 2 October 2024

Charul Agrawal and Taranjeet Duggal

The study aims to study the extent of research done in luxury marketing in an emerging economy like India by conducting a bibliometric analysis. A period of 21 years has been…

Abstract

The study aims to study the extent of research done in luxury marketing in an emerging economy like India by conducting a bibliometric analysis. A period of 21 years has been considered to present a comprehensive picture for results and analysis. Key findings indicate the gaps and scope of further research for academics in India and abroad. The findings indicate a dearth of research by scholars and academicians in luxury, counterfeit and masstige, especially when there is a surge of the upper middle class in India. More specifically, Indian-grown luxury brands also present a massive scope for future research.

Details

Resilient Businesses for Sustainability
Type: Book
ISBN: 978-1-83608-129-6

Keywords

Book part
Publication date: 16 September 2024

Alankaar Sharma

While the global body of knowledge on men and boys' experiences of sexual abuse during childhood has incrementally grown over the last several years, it remains an…

Abstract

While the global body of knowledge on men and boys' experiences of sexual abuse during childhood has incrementally grown over the last several years, it remains an under-researched area of study. Drawing upon primary phenomenological research with men survivors of child sexual abuse (CSA) in India, in this chapter, I report and discuss findings that explore the gendered meanings that men who have experienced CSA make of their abuse experiences against a backdrop of heteropatriarchal assumptions and expectations regarding masculinity. Specifically, I discuss how effeminophobia – anxiety and disdain regarding feminine-identified behaviors, mannerisms, attributes and presentations among boys and men – is an ingredient and also the product of such meaning making and eventually works as another form of violence against men and boy survivors following the primary experience of sexual violence. More broadly, acknowledging the role of effeminophobia in constructing men and boy survivors' experiences supports the argument that heteropatriarchy is a double-edged weapon that injures women and gender-expansive people disproportionately but also hurts boys and men.

Details

Debating Childhood Masculinities
Type: Book
ISBN: 978-1-80455-390-9

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 August 2023

Damianos P. Sakas, Nikolaos T. Giannakopoulos, Marina C. Terzi, Ioannis Dimitrios G. Kamperos and Nikos Kanellos

The paper’s main goal is to examine the relationship between the video marketing of financial technologies (Fintechs) and their vulnerable website customers’ brand engagement in…

Abstract

Purpose

The paper’s main goal is to examine the relationship between the video marketing of financial technologies (Fintechs) and their vulnerable website customers’ brand engagement in the ongoing coronavirus disease 2019 (COVID-19) crisis.

Design/methodology/approach

To extract the required outcomes, the authors gathered data from the five biggest Fintech websites and YouTube channels, performed multiple linear regression models and developed a hybrid (agent-based and dynamic) model to assess the performance connection between their video marketing analytics and vulnerable website customers’ brand engagement.

Findings

It has been found that video marketing analytics of Fintechs’ YouTube channels are a decisive factor in impacting their vulnerable website customers’ brand engagement and awareness.

Research limitations/implications

By enhancing video marketing analytics of their YouTube channels, Fintechs can achieve greater levels of vulnerable website customers’ engagement and awareness. Higher levels of vulnerable customers’ brand engagement and awareness tend to decrease their vulnerability by enhancing their financial knowledge and confidence.

Practical implications

Fintechs should aim to increase the number of total videos on their YouTube channels and provide videos that promote their customers’ knowledge of their services to increase their brand engagement and awareness, thus reducing their vulnerability. Moreover, Fintechs should be aware not to over-post videos because they will be in an unfavorable position against their competitors.

Originality/value

This research offers valuable insights regarding the importance of video marketing strategies for Fintechs in promoting their vulnerable website customers’ brand awareness during crisis periods.

Details

International Journal of Bank Marketing, vol. 42 no. 6
Type: Research Article
ISSN: 0265-2323

Keywords

Case study
Publication date: 20 September 2024

Manish Agarwal and V.S. Prasad Kandi

After completion of the case study, the students will be able to explore the challenges involved in growing a business during its early stages inorganically, discuss the…

Abstract

Learning outcomes

After completion of the case study, the students will be able to explore the challenges involved in growing a business during its early stages inorganically, discuss the challenges faced by start-ups in their quest for growth in an emerging market, investigate the reasons behind the mergers and acquisitions, comprehend the issues in the merger of a start-up and a conventional bank, identify the various possible synergies out of the merger and examine the growth strategies that a troubled start-up such as Slice can follow to survive and expand its business operations.

Case overview/synopsis

The case study discusses the challenges that Slice, a modern fintech organization, and North East Small Finance Bank (NESFB) face due to the changing business and regulatory environment. After working tirelessly to earn the trust of India’s banking regulator, Slice got the approval for its merger with NESFB. While Slice and NESFB got a new lease of life after the approval of their merger, Rajan Bajaj, founder of Slice, needed to make the merger a success by leveraging on the strength of the combined entity and meeting all the lending and other regulatory requirements applicable to small finance banks.

Complexity academic level

This case study is suitable for MBA/MS/BBA/BS students.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 11: Strategy.

1 – 10 of 311