Search results

1 – 10 of over 1000
Article
Publication date: 3 July 2024

Anis Abdelkefi, Amal Souissi and Imen Abdennadher

This paper aims at the analytical formulation of the electromagnetic features of flux switching permanent magnet (PM) machines with emphasis on the PM air gap flux density and…

10

Abstract

Purpose

This paper aims at the analytical formulation of the electromagnetic features of flux switching permanent magnet (PM) machines with emphasis on the PM air gap flux density and armature magnetic reaction.

Design/methodology/approach

The PM air gap flux density is formulated considering three different analytical models. These differ by the incorporation of the air gap magnetic saliency level from the stator side. In addition, the armature magnetic reaction is investigated based on a simplified magnetic reluctance circuit that considers the flux switching permanent magnet machines magnetic circuit geometry specification. Then, the no- and on-load torque is predicted based on the two air gap flux densities.

Findings

It has been found that the PM air gap flux density considering the stator saliencies with trapezoidal magnetomotive force waveform presents the highest accuracy. Despite the simplicity of the magnetic equivalent circuit-based approach, the predicted air gap armature magnetic reaction is in good agreement with the finite element analysis (FEA) one. These lead to the analytical predictions of the no- and on-load torque which is characterized by an acceptable accuracy.

Research limitations/implications

This work should be extended to experimental validation of the FEA results regarding the torque production generation.

Originality/value

The paper proposes an improved design-oriented analytical approach with emphasis on the PM air gap flux density and the armature magnetic reaction of flux switching PM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 November 2021

Yi Wang, Honghua Wang, Jingwei Zhang and Chao Tan

This paper aims to establish a piecewise Maxwell stress analytical model of bearingless switched reluctance motor (BSRM) for the full rotor angular positions. The proposed model…

Abstract

Purpose

This paper aims to establish a piecewise Maxwell stress analytical model of bearingless switched reluctance motor (BSRM) for the full rotor angular positions. The proposed model varies from the existing models, which are only applicable to the partial-overlapping positions of stator and rotor poles. By extending the applicable rotor angular positions, this model provides a basic analytical model for the multi-phase excitation control of BSRM.

Design/methodology/approach

The full rotor angular positions are classified into the partial-overlapping positions and the non-overlapping positions. At first, two different air gap subdividing methods are proposed, respectively, for the two-position ranges. Then, different integration paths are selected accordingly. Furthermore, two approximate methods are presented to calculate the average flux density of each air gap subdivision. Finally, considering the mutual coupling between the two perpendicular radial suspension forces, a piecewise Maxwell stress analytical model is derived for the full rotor angular positions of BSRM.

Findings

A piecewise Maxwell stress analytical model of BSRM is built for the full rotor angular positions, and applicable to the multi-phase excitation mode of BSRM. For the partial-overlapping positions and the non-overlapping positions, two sets of air gap subdividing methods, integration paths and approximate calculation methods of air gap flux densities are proposed, respectively. The accuracy and reliability of the proposed model are verified by the finite element method.

Originality/value

The piecewise Maxwell stress analytical model of BSRM for the full rotor angular positions is proposed for the first time. The novel air gap subdividing methods, integration paths, approximate calculation methods of air gap flux densities and the coupling between the two radial suspension forces are adopted to improve the modeling accuracy. As the applicable range of rotor angular position is extended, this model overcomes the limitation of the existing models only for single-phase excitation mode and contributes to the accurate control of BSRM multi-phase excitation mode.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Norman Borchardt and Roland Kasper

This study aims to present a parametric model of a novel electrical machine, based on a slotless air gap winding, allowing for fast and precise magnetic circuit calculations.

Abstract

Purpose

This study aims to present a parametric model of a novel electrical machine, based on a slotless air gap winding, allowing for fast and precise magnetic circuit calculations.

Design/methodology/approach

Approximations of Fourier coefficients through an exponential function deliver the required nonlinear air gap flux density and inductance. Accordingly, major machine characteristics, such as back-EMF and torque, can be calculated analytically with high speed and precision. A physical model of the electrical machine with air gap windings is given. It is based on a finite element analysis of the air gap magnetic flux density and inductance. The air gap height and the permanent magnetic height are considered as magnetic circuit parameters.

Findings

In total, 11 Fourier coefficient matrixes with 65 sampling points each were generated. From each, matrix a two-dimensional surface function was approximated by using exponentials. Optimal parameters were calculated by the least-squares method. Comparison with the finite element model demonstrates a very low error of the analytical approximation for all Fourier coefficients considered. Finally, the dynamics of an electrical machine, modeled using the preceding magnetic flux density approximation, are analyzed in MATLAB Simulink. Required approximations of the phase self-inductance and mutual inductance were given. Accordingly, the effects of the two magnetic circuit parameters on the dynamics of electrical machine current as well as the electrical machine torque are explained.

Originality/value

The presented model offers high accuracy comparable to FE-models, needing only very limited computational complexity.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 May 2022

Guozhen Zhang, Rui Nie, Jikai Si, Xiaohui Feng and Changli Wang

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the…

Abstract

Purpose

This study aims to unveil the generation mechanism of the thrust force in a tubular flux-switching permanent magnet (PM) linear (TFSPML) machine; the operation principle of the TFSPML machine is analyzed.

Design/methodology/approach

First, the air-gap flux density harmonic characteristics excited by PMs and armature windings are investigated and summarized based on a simple magnetomotive force (MMF)-permeance model. Then, the air-gap field modulation theory is applied in analyzing the air-gap flux density harmonics that contribute to the electromagnetic force. In addition, a simple method for separating the end force of the TFSPML machine is proposed, which is a significant foundation for the comprehensive analysis of this type of machine. As a result, the operation principle of the TFSPML machine is thoroughly revealed.

Findings

The analysis shows that the average electromagnetic force is mainly contributed by the air-gap dominant harmonics, and the thrust force ripple is mainly caused by the end force.

Originality/value

In this paper, the operation principle of the TFSPML machine is analyzed from the perspective of air-gap field modulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Ling Chen, Honghua Wang and Chao Tan

This paper aims to propose a novel mathematical model of bearingless switched reluctance motor (BSRM). This model differs from conventional mathematical models in the calculation…

Abstract

Purpose

This paper aims to propose a novel mathematical model of bearingless switched reluctance motor (BSRM). This model differs from conventional mathematical models in the calculation of torque and suspension forces. Conventional mathematical models neglect the coupling relationship between the α- and β-axes or ignore the magnetic saturation of the Si-Fe material. This study considers these issues simultaneously. Additionally, considering the air-gap edge effect, the fringing coefficient is used to establish a high-precision mathematical model.

Design/methodology/approach

An innovative mathematical model of BSRM based on the Maxwell stress method was established by selecting an appropriate integration path. The fringing coefficient of the air-gap was computed based on the finite element analysis results at the aligned position of the stator and rotor poles. Using the least squares fitting method, the piecewise fitted magnetization curve of the Si-Fe material was utilized to calculate flux density.

Findings

The appropriate integration path of the Maxwell stress method was selected, which considered the coupling relationship of the suspension forces in the α- and β-axes and was closer to the actual situation. The fringing coefficient of the air-gap improved the calculation accuracy of air-gap flux density. The magnetomotive force was consumed by the magnetic resistance of the stator and rotor poles considering the magnetic saturation.

Originality/value

A novel mathematical model of BSRM is proposed. Different from conventional mathematical models, the proposed model can effectively solve the coupling relationship of the suspension forces in the α- and β-axes. Additionally, this model is consistent with the actual situation of motor as it includes a reasonable calculation of the air-gap flux density, considering the air-gap edge effect and magnetic saturation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 June 2010

Yuchai Sun, Xiaogang Chen, Zhonghao Cheng and Xunwei Feng

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable…

Abstract

Purpose

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable of dealing with conductive, convective and radioactive heat transfer.

Design/methodology/approach

Quantificational results were given out by the aid of finite element (FE) analysis software MSC MARC Mentat.

Findings

Significant findings through this paper include the change in heat flux against time and the transit temperature distribution at the cross‐section of the fabric assembly. The size of the air gaps has a significant influence on the heat transfer. The balance heat flux drops by 40 per cent when the air gap increases from 2 to 10 mm. The influence of the air gap tends to become smaller as the air gap is further increased. The number of fabric layers in the textile assembly has a noted influence, more so when the ambient temperature is lower. Comparisons between the theoretical and tested results show a good agreement.

Originality/value

This paper has established a new method for clothing comfort study by making use of a general purpose FE method software package.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 January 2018

Mohammadreza Baghayipour, Ahmad Darabi and Ali Dastfan

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial…

Abstract

Purpose

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machines with surface-mounted magnets considering the winding distribution and iron saturation effects.

Design/methodology/approach

First, a procedure to calculate the winding distribution with a rectangular cross-section is proposed. The magnetic field distribution and magnetic motive force (MMF) drop due to saturation in iron cores are then exactly extracted in a 2-D analytical model. The consequent influence on air-gap magnetic field and Back EMF are also calculated using a new iterative algorithm. The results are compared with those of the conventional analytical model without saturation, 2-D finite element analysis (FEA) and an experiment on a fabricated prototype machine.

Findings

Unlike the conventional method, the new method yields the no-load magnetic field distributions in air-gap and iron cores and Back EMF very exactly such that the results well match to those of the FEA and experiment.

Originality/value

Unlike the conventional winding factor, the winding distribution is considered here along the both axial and circumferential directions, which improves the accuracy level of results for non-slotted structures with relatively large air-gaps. The magnetic field distribution and MMF drop-in iron parts are also calculated as the basis for exact recalculation of air-gap magnetic field and Back EMF. Because of small computational burden beside superior accuracy, the proposed model can be treated as an accurate and fast substitute for FEA to be used during the design procedure or for predicting the other performance characteristics of TORUS-NS AFPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2024

Philip Desenfans, Zifeng Gong, Dries Vanoost, Konstantinos Gryllias, Jeroen Boydens, Herbert De Gersem and Davy Pissoort

When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air

Abstract

Purpose

When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air gap permeance calculation of single-slice magnetic equivalent circuits (MECs) of electric motors with skewed rotors. This paper aims to extend an air gap permeance calculation method incorporating flux fringing for unskewed rotors to skewed and radially eccentric rotors.

Design/methodology/approach

Assuming axial independence, the unskewed air gap permeance is rotated according to the skew and integrated along the axial dimension, resulting in a first method. The integral is approximated analytically, resulting in a second method. Results are compared to a commonly used reference method and validated using a non-linear finite element method (FEM) simulation.

Findings

The proposed methods provide better alignment with the FEM validation compared to the reference method for skewed rotors and common rotor eccentricity, i.e. below 50% of the air gap length. The analytical method is shown to be competitive with the reference method regarding computational time cost.

Originality/value

Two novel air gap permeance methods are proposed for single-slice MECs with skewed rotors. Their characteristics are discussed and validated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2021

Jun Zhu, Shuaihui Li, Xiangwei Guo, Huaichun Nan and Ming Yang

This paper aims to study the relationship between leakage flux coefficient and the coreless axial magnetic field permanent magnet synchronous generator (AFPMSG) size and obtain…

Abstract

Purpose

This paper aims to study the relationship between leakage flux coefficient and the coreless axial magnetic field permanent magnet synchronous generator (AFPMSG) size and obtain the expressions of leakage flux coefficient.

Design/methodology/approach

In this paper, a magnetic circuit model of coreless AFPMSG is proposed. Four kinds of leakage permeances of permanent magnet (PM) are considered, and the expression of no-load leakage flux coefficient is obtained. Solving the integral region of leakage permeances by generator size, which improves the accuracy of the solution.

Findings

Finite element method and magnetic circuit method are used to obtain the no-load leakage flux coefficient and its variation trend charts with the change of pole arc coefficient, air gap length and PM thickness. The average errors of the two methods are 2.835%, 0.84% and 1.347%, respectively. At the same time, the results of single-phase electromotive force obtained by magnetic circuit method, three dimensional finite element method and prototype experiments are 19.36 V, 18.82 V and 19.09 V, respectively. The results show that the magnetic circuit method is correct in calculating the no-load leakage flux coefficient.

Originality/value

The special structure of the coreless AFPMSG is considered in the presented equivalent magnetic circuit and equations, and the equations in this paper can be applied for leakage flux evaluating purposes and initial parameter selection of the coreless AFPMSG.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000