Search results

1 – 6 of 6
Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

2012

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

56

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 March 2024

Haichao Wang, Xiaoqiang Liu, Zhanjiang Li, Li Chen, Pinqiang Dai and Qunhua Tang

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Abstract

Purpose

The purpose of this paper is to study the high temperature oxidation behavior of Ti and C-added FeCoCrNiMn high entropy alloys (HEAs).

Design/methodology/approach

Cyclic oxidation method was used to obtain the oxidation kinetic profile and oxidation rate. The microstructures of the surface and cross section of the samples after oxidation were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM).

Findings

The results show that the microstructure of the alloy mainly consisted of FCC (Face-centered Cubic Structure) main phase and carbides (M7C3, M23C6 and TiC). With the increase of Ti and C content, the microhardness, strength and oxidation resistance of the alloy were effectively improved. After oxidation at a constant temperature of 800 °C for 100 h, the preferential oxidation of chromium in the chromium carbide determined the early formation of dense chromium oxide layers compared to the HEAs substrate, resulting in the optimal oxidation resistance of the TC30 alloy.

Originality/value

More precipitated CrC can preferentially oxidize and rapidly form a dense Cr2O3 layer early in the oxidation, which will slow down the further oxidation of the alloy.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

37

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 November 2022

Md. Raijul Islam, Ayub Nabi Nabi Khan, Rois Uddin Mahmud, Shahin Mohammad Nasimul Haque and Md. Mohibul Islam Khan

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a…

Abstract

Purpose

This paper aims to evaluate the effects of banana (Musa) peel and guava (Psidium guajava) leaves extract as mordants on jute–cotton union fabrics dyed with onion skin extract as a natural dye.

Design/methodology/approach

The dye was extracted from the outer skin of onions by boiling in water and later concentrated. The bio-mordants were prepared by maceration using methanol and ethanol. The fabrics were pre-mordanted, simultaneously mordanted and post-mordanted with various concentrations according to the weight of the fabric. The dyed and mordanted fabrics were later subjected to measurement of color coordinates, color strength and colorfastness to the washing test. Furthermore, the dyed samples were characterized by Fourier transform infrared, and different chemical bonds were analyzed by X-ray photoelectron spectroscopy analysis.

Findings

Significant improvement was obtained in colorfastness and color strength values in various instances using banana peel and guava leaves as bio mordants. Post-mordanted with banana peel provided the best results for wash fastness. Better color strength was achieved by fabric post-mordanted with guava leave extracts.

Originality/value

Sustainable dyeing methods of natural dyes using banana peel and guava leaves as bio mordants were explored on jute–cotton union fabrics. Improvement in colorfastness and color strength for various instances was observed. Thus, this paper provides a promising alternative to metallic salt mordants.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2024

Lida Haghnegahdar, Sameehan S. Joshi, Rohith Yanambaka Venkata, Daniel A. Riley and Narendra B. Dahotre

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems…

19

Abstract

Purpose

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems. Manufacturing systems are increasingly faced with risk of attacks not only by traditional malicious actors such as hackers and cyber-criminals but also by some competitors and organizations engaged in corporate espionage. This paper aims to elaborate a plausible risk practice of designing and demonstrate a case study for the compromised-based malicious for polymer 3D printing system.

Design/methodology/approach

This study assumes conditions when a machine was compromised and evaluates the effect of post compromised attack by studying its effects on tensile dog bone specimens as the printed object. The designed algorithm removed predetermined specific number of layers from the tensile samples. The samples were visually identical in terms of external physical dimensions even after removal of the layers. Samples were examined nondestructively for density. Additionally, destructive uniaxial tensile tests were carried out on the modified samples and compared to the unmodified sample as a control for various mechanical properties. It is worth noting that the current approach was adapted for illustrating the impact of cyber altercations on properties of additively produced parts in a quantitative manner. It concurrently pointed towards the vulnerabilities of advanced manufacturing systems and a need for designing robust mitigation/defense mechanism against the cyber altercations.

Findings

Density, Young’s modulus and maximum strength steadily decreased with an increase in the number of missing layers, whereas a no clear trend was observed in the case of % elongation. Post tensile test observations of the sample cross-sections confirmed the successful removal of the layers from the samples by the designed method. As a result, the current work presented a cyber-attack model and its quantitative implications on the mechanical properties of 3D printed objects.

Originality/value

To the best of the authors’ knowledge, this is the original work from the team. It is currently not under consideration for publication in any other avenue. The paper provides quantitative approach of realizing impact of cyber intrusions on deteriorated performance of additively manufactured products. It also enlists important intrusion mechanisms relevant to additive manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last week (6)

Content type

Article (6)
1 – 6 of 6