Search results

1 – 10 of 170
Article
Publication date: 11 January 2021

Frank Kwabena Afriyie Nyarko and G. Takyi

A numerical study on the reliability of soldered interconnects of c-Si solar photovoltaic cells has been conducted.

Abstract

Purpose

A numerical study on the reliability of soldered interconnects of c-Si solar photovoltaic cells has been conducted.

Design/methodology/approach

A three-year data (2012–2014) from outdoor weathering of PV modules was used to generate temperature cycle profiles to serve as thermal loads and boundary conditions for the investigation of the thermo-mechanical response of the soldered interconnects when subjected to real outdoor conditions using finite element analysis (FEA) Software (Ansys. 18.2). Two types of soldered interconnections, namely, Sn60Pb40 and Sn3.8Ag0.7Cu (Pb-free), were modelled in this study.

Findings

Life prediction results from accumulated creep energy density damage show that the solder interconnects will achieve maximum life under the 2014 thermal cycle loading. In particular, the Sn60Pb40 solder interconnection is expected to achieve 14,153 cycles (25.85 years) whilst the Pb-free solder interconnection is expected to achieve 9,249 cycles (16.89 years). Additionally, under the test region average (TRA) thermal cycle, the Pb-free and Pb-Sn solder interconnections are expected to achieve 7,944 cycles (13.69 years) and 12,814 cycles (23.4 years), respectively. The study shows that Sn60Pb40 solder interconnections are likely to exhibit superior reliability over the Pb-free solder interconnections at the test site.

Practical implications

This study would be useful to electronics manufacturing industry in the search for a suitable alternative to SnPb solders and also the thermo-mechanical reliability research community and manufacturers in the design of robust PV modules.

Originality/value

The study has provided TRA data/results which could be used to represent the test region instead of a particular year. The study also indicates that more than six thermal cycles are required before any meaningful conclusions can be drawn. Finally, the life of the two types of solders (SnPb and Pb-free) as interconnecting materials for c-Si PV have been predicted for the test region (Kumasi in sub-Saharan Africa).

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Abstract

Purpose

This study aims to present a more accurate lifetime prediction model considering solder chemical composition.

Design/methodology/approach

Thermal cycling and standard creep tests as well as finite element simulation were used.

Findings

The study found lower error in the solder joint lifetime evaluation. The higher the Ag content is, the higher the lifetime is achieved.

Originality/value

It is confirmed.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 February 2009

Stoyan Stoyanov, Chris Bailey and Marc Desmulliez

This paper aims to present an integrated optimisation‐modelling computational approach for virtual prototyping that helps design engineers to improve the reliability and…

Abstract

Purpose

This paper aims to present an integrated optimisation‐modelling computational approach for virtual prototyping that helps design engineers to improve the reliability and performance of electronic components and systems through design optimisation at the early product development stage. The design methodology is used to identify the optimal design of lead‐free (Sn3.9Ag0.6Cu) solder joints in fine‐pitch copper column bumped flip‐chip electronic packages.

Design/methodology/approach

The design methodology is generic and comprises numerical techniques for computational modelling (finite element analysis) coupled with numerical methods for statistical analysis and optimisation. In this study, the integrated optimisation‐modelling design strategy is adopted to prototype virtually a fine‐pitch flip‐chip package at the solder interconnect level, so that the thermal fatigue reliability of the lead‐free solder joints is improved and important design rules to minimise the creep in the solder material, exposed to thermal cycling regimes, are formulated. The whole prototyping process is executed in an automated way once the initial design task is formulated and the conditions and the settings for the numerical analysis used to evaluate the flip‐chip package behaviour are specified. Different software modules that incorporate the required numerical techniques are used to identify the solution of the design optimisation problem related to solder joints reliability optimisation.

Findings

For fine‐pitch flip‐chip packages with copper column bumped die, it is found that higher solder joint volume and height of the copper column combined with lower copper column radius and solder wetting around copper column have a positive effect on the thermo‐mechanical reliability.

Originality/value

The findings of this research provide design rules for more reliable lead‐free solder joints for copper column bumped flip‐chip packages and help to establish further the technology as one of the viable routes for flip‐chip packaging.

Details

Soldering & Surface Mount Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 February 2007

Andrew Richardson, Chris Bailey, Jean Marc Yanou, Norbert Dumas, Dongsheng Liu, Stoyan Stoyanov and Nadia Strusevich

To present key challenges associated with the evolution of system‐in‐package technologies and present technical work in reliability modeling and embedded test that contributes to…

Abstract

Purpose

To present key challenges associated with the evolution of system‐in‐package technologies and present technical work in reliability modeling and embedded test that contributes to these challenges.

Design/methodology/approach

Key challenges have been identified from the electronics and integrated MEMS industrial sectors. Solutions to optimising the reliability of a typical assembly process and reducing the cost of production test have been studied through simulation and modelling studies based on technology data released by NXP and in collaboration with EDA tool vendors Coventor and Flomerics.

Findings

Characterised models that deliver special and material dependent reliability data that can be used to optimize robustness of SiP assemblies together with results that indicate relative contributions of various structural variables. An initial analytical model for solder ball reliability and a solution for embedding a low cost test for a capacitive RF‐MEMS switch identified as an SiP component presenting a key test challenge.

Research limitations/implications

Results will contribute to the further development of NXP wafer level system‐in‐package technology. Limitations are that feedback on the implementation of recommendations and the physical characterisation of the embedded test solution.

Originality/value

Both the methodology and associated studies on the structural reliability of an industrial SiP technology are unique. The analytical model for solder ball life is new as is the embedded test solution for the RF‐MEMS switch.

Details

Circuit World, vol. 33 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 April 2014

Jonas Johansson, Ilja Belov, Erland Johnson and Peter Leisner

The purpose of this paper is to introduce a novel computational method to evaluate damage accumulation in a solder joint of an electronic package, when exposed to operating…

Abstract

Purpose

The purpose of this paper is to introduce a novel computational method to evaluate damage accumulation in a solder joint of an electronic package, when exposed to operating temperature environment. A procedure to implement the method is suggested, and a discussion of the method and its possible applications is provided in the paper.

Design/methodology/approach

Methodologically, interpolated response surfaces based on specially designed finite element (FE) simulation runs, are employed to compute a damage metric at regular time intervals of an operating temperature profile. The developed method has been evaluated on a finite-element model of a lead-free PBGA256 package, and accumulated creep strain energy density has been chosen as damage metric.

Findings

The method has proven to be two orders of magnitude more computationally efficient compared to FE simulation. A general agreement within 3 percent has been found between the results predicted with the new method, and FE simulations when tested on a number of temperature profiles from an avionic application. The solder joint temperature ranges between +25 and +75°C.

Practical implications

The method can be implemented as part of reliability assessment of electronic packages in the design phase.

Originality/value

The method enables increased accuracy in thermal fatigue life prediction of solder joints. Combined with other failure mechanisms, it may contribute to the accuracy of reliability assessment of electronic packages.

Article
Publication date: 1 January 1987

T.K. Hellen and W.S. Blackburn

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are…

Abstract

A review is made of methods for calculating parameters characterizing crack tip behaviour in non‐linear materials. Convenient methods of calculating J‐integral type quantities are reviewed, classified broadly into two groups, as domain integrals and virtual crack extension techniques. In addition to considerations of how such quantities may be calculated by finite elements, assessment methods of conducting the actual incremental analyses are described.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1989

W. Engelmaier

In this paper an overview of the issues underlying surface mount solder joint long‐term reliability is presented. The paper gives state‐of‐the‐art solutions for ‘Design for…

Abstract

In this paper an overview of the issues underlying surface mount solder joint long‐term reliability is presented. The paper gives state‐of‐the‐art solutions for ‘Design for Reliability’ in simple design tool form, discusses the important accelerated reliability test issues, and provides the equations to estimate the reliability of SM product in use as well as the expected cyclic life in accelerated tests.

Details

Soldering & Surface Mount Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0954-0911

Abstract

Purpose

This study aims to investigate simultaneous power and thermal loading.

Design/methodology/approach

Finite element method simulations coupled with experiments.

Findings

The effects of power cycling have been determined.

Originality/value

This paper aims to testify the combined effects of thermal and power cycling loads on the reliability of solder ball joints with barrel- and hourglass-type geometries in an electronic system. The finite element simulation outcomes showed that the maximum strain energy was accumulated at the edges of barrel-type solder, whereas the hourglass-type was vulnerable at the necking side. It was also found that the hourglass-type solder showed a reliable behavior when the sole thermal cycling was exerted to the electronic system, whereas the barrel-type solder was a better choice under simultaneous application of thermal and power loadings. The experimental results also confirmed the finite element simulation and indicated that the solder joint reliability strongly depends on the geometry of interconnection in different operating conditions. An extensive discussion was presented to shed light on the paramount importance of combined thermal/power cycling on the reliability of solder joints.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2002

P. Towashiraporn, G. Subbarayan, B. McIlvanie, B.C. Hunter, D. Love and B. Sullivan

Aims to show that with careful modelling, the fatigue life of solder joints of identical geometry and microstructure can be predicted very accurately (through empirical…

Abstract

Aims to show that with careful modelling, the fatigue life of solder joints of identical geometry and microstructure can be predicted very accurately (through empirical correlations) under different environmental test or field use conditions. Here, on the TI 144 chip ‐scale package, the empirical correlation for fatigue life developed under thermal cycling conditions is used to predict the life under power cycling. This accurate model has served as the physical basis which in to demonstrate quantitatively the equivalence of thermal cycling and power cycling as valid accelerated life tests. Describes the great importance of spatial refinement, temporal refinement, and accurate boundary conditions, including the often ignored natural convection boundary conditions, and their effect on predicted life.

Details

Soldering & Surface Mount Technology, vol. 14 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 170