Search results

1 – 10 of 313
Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

68

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 January 2024

Mohamed Marzouk and Mohamed Zaher

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing…

58

Abstract

Purpose

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing complexity of different systems, facility managers may suffer from a lack of information. The purpose of this paper is to propose a new facility management approach that links segmented assets to the vital data required for managing facilities.

Design/methodology/approach

Automatic point cloud segmentation is one of the most crucial processes required for modelling building facilities. In this research, laser scanning is used for point cloud acquisition. The research utilises region growing algorithm, colour-based region-growing algorithm and Euclidean cluster algorithm.

Findings

A case study is worked out to test the accuracy of the considered point cloud segmentation algorithms utilising metrics precision, recall and F-score. The results indicate that Euclidean cluster extraction and region growing algorithm revealed high accuracy for segmentation.

Originality/value

The research presents a comparative approach for selecting the most appropriate segmentation approach required for accurate modelling. As such, the segmented assets can be linked easily with the data required for facility management.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 October 2021

Boppana V. Chowdary and Deepak Jaglal

This paper aims to present a reverse engineering (RE) approach for three-dimensional (3D) model reconstruction and fast prototyping (FP) of broken chess pieces.

Abstract

Purpose

This paper aims to present a reverse engineering (RE) approach for three-dimensional (3D) model reconstruction and fast prototyping (FP) of broken chess pieces.

Design/methodology/approach

A case study involving a broken chess piece was selected to demonstrate the effectiveness of the proposed unconventional RE approach. Initially, a laser 3D scanner was used to acquire a (non-uniform rational B-spline) surface model of the object, which was then processed to develop a parametric computer aided design (CAD) model combined with geometric design and tolerancing (GD&T) technique for evaluation and then for FP of the part using a computer numerical controlled (CNC) machine.

Findings

The effectiveness of the proposed approach for reconstruction and FP of rotational parts was ascertained through a sample part. The study demonstrates non-contact data acquisition technologies such as 3D laser scanners together with RE systems can support to capture the entire part geometry that was broken/worn and developed quickly through the application of computer aided manufacturing principles and a CNC machine. The results indicate that design communication, customer involvement and FP can be efficiently accomplished by means of an integrated RE workflow combined with rapid product development tools and techniques.

Originality/value

This research established a RE approach for the acquisition of broken/worn part data and the development of parametric CAD models. Then, the developed 3D CAD model was inspected for accuracy by means of the GD&T approach and rapidly developed using a CNC machine. Further, the proposed RE led FP approach can provide solutions to similar industrial situations wherein agility in the product design and development process is necessary to produce physical samples and functional replacement parts for aging systems in a short turnaround time.

Details

Journal of Engineering, Design and Technology, vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 August 2022

Zhao Xu, Yangze Liang, Hongyu Lu, Wenshuo Kong and Gang Wu

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction…

Abstract

Purpose

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction project process is one of the key factors for the success of a project. How to effectively monitor the construction process of prefabricated building construction projects is an urgent problem to be solved. Aiming at the problems existing in the monitoring of the construction process of prefabricated buildings, this paper proposes a monitoring method based on the feature extraction of point cloud model.

Design/methodology/approach

This paper uses Trimble X7 3D laser scanner to complete field data collection experiments. The point cloud data are preprocessed, and the prefabricated component segmentation and geometric feature measurement are completed based on the PCL platform. Aiming at the problem of noisy points and large amount of data in the original point cloud data, the preprocessing is completed through the steps of constructing topological relations, thinning, and denoising. According to the spatial position relationship and geometric characteristics of prefabricated frame structure, the segmentation algorithm flow is designed in this paper. By processing the point cloud data of single column and beam members, the quality of precast column and beam members is measured. The as-built model and as-designed model are compared to realize the visual monitoring of construction progress.

Findings

The experimental results show that the dimensional measurement accuracy of beam and column proposed in this paper is more than 95%. This method can effectively detect the quality of prefabricated components. In the aspect of progress monitoring, the visualization of real-time progress monitoring is realized.

Originality/value

This paper proposed a new monitoring method based on feature extraction of the point cloud model, combined with three-dimensional laser scanning technology. This method allows for accurate monitoring of the construction process, rapid detection of construction information, and timely detection of construction quality errors and progress delays. The treatment process based on point cloud data has strong applicability, and the real-time point cloud data transfer treatment can guarantee the timeliness of monitoring.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 October 2021

John Peter Cooney, David Oloke and Louis Gyoh

This study aims to demonstrate the possibility of showing the functionality of complex microbial groups, within ancient structures within a process of refurbishment on a heritage…

Abstract

Purpose

This study aims to demonstrate the possibility of showing the functionality of complex microbial groups, within ancient structures within a process of refurbishment on a heritage building information modelling (BIM) platform.

Design/methodology/approach

Both a qualitative and qualitative research method will be used throughout, as observational and scientific results will be obtained and collated. This path being; phenomena – acquisition tools – storage – analysis tools – literature. Using this methodology, one pilot study within the scope of demolition and refurbishment, using suitable methods of collecting and managing data (structural or otherwise), will be used and generated by various software and applications. The principle methods used for the identification of such micro-organisms will incorporate a polymerase chain reaction method (PCR), to amplify DNA and to identify any or all spores present. The BIM/historical BIM (HBIM) process will be used to create a remotely-based survey to obtain and collate data using a laser scanner to produce a three-dimensional point cloud model to evaluate and deduce the condition, make-up and stature of the monument. A documentation management system will be devised to enable the development of plain language questions and an exchange information requirement, to identify such documentation required to enable safe refurbishment and to give health and safety guidance. Four data sampling extractions will be conducted, two for each site, within the research, for each of the periods being assessed, that being the Norman and Tudor areas of the monument.

Findings

From laboratory PCR analysis, results show a conclusive presence of micro-organism groups and will be represented within a hierarchical classification, from kingdom to species.

Originality/value

The BIM/HBIM process will highlight results in a graphical form to show data collected, particularly within the PCR application. It will also create standardisation and availability for such data from ancient monuments to make available all data stored, as such analysis becomes substantially important to enable the production of data sets for comparison, from within the framework of this research.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 May 2022

Mustafa Onur Savaşkan and Ozan Önder Özener

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made…

Abstract

Purpose

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made and highly structured H-BIM approaches can effectively be implemented in preservation applications for historic vernacular buildings in the rural architecture context.

Design/methodology/approach

Using inexpensive digital photogrammetry techniques tightly combined with an object-oriented BIM ontology, parametric meta-modeling and object/system propagation methods, the study employed a holistic H-BIM approach for capturing the materiality, building object behaviors and indigenous construction principles of a characteristic vernacular house that were synthesized in a parametric H-BIM model. The followed stages, steps and connected methods were systematized and articulated in a prototypical H-BIM implementation framework.

Findings

The study findings suggested that the developed parametric H-BIM approach can return effective results with the combined use of low-cost and practical digital photogrammetry with BIM methods. The flexibility and adaptability of the parametric H-BIM implementation framework facilitated the synthesis of a comprehensive H-BIM model and allowed an in-depth evaluation of local architectural heritage with its physical, spatial and environmental characteristics. The proposed H-BIM approach also provided significant documentation and system-specific assessment benefits for preserving the vernacular examples which are prone to extinction especially due to structural and systemic deterioration.

Originality/value

The study proposes a feasible, practical and replicable H-BIM implementation methodology for vernacular preservation applications. The knowledge-embedded H-BIM approach, flows and techniques presented in this study provide a holistic and systematic H-BIM framework – with the integrated use of digital photogrammetry and parametric meta-modeling methods – that has the potential for the democratization of H-BIM applications in education and practice.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 15 January 2024

Godfred Fobiri, Innocent Musonda and Franco Muleya

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in…

Abstract

Purpose

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in the built environment. This paper aims to review RC applications, potentials, limitations and the extent to which RC can be adopted for cost monitoring of construction projects.

Design/methodology/approach

A mixed-method approach, using Bibliometric analysis and the PRISMA framework, was used to review and analyse 112 peer-reviewed journal articles from the Scopus and Web of Science databases.

Findings

The study reveals RC has been applied in various areas in the built environment, but health and safety, cost and labour productivity monitoring have received little or no attention. It is proposed that RC can significantly support cost monitoring owing to its ability to acquire accurate and quick digital as-built 3D point cloud data, which contains rich measurement points for the valuation of work done.

Research limitations/implications

The study’s conclusions are based only on the Scopus and Web of Science data sets. Only English language documents were approved, whereas others may be in other languages. The research is a non-validation of findings using empirical data to confirm the data obtained from RC literature.

Practical implications

This paper highlights the importance of RC for cost monitoring in construction projects, filling knowledge gaps and enhancing project outcomes.

Social implications

The implementation of RC in the era of the digital revolution has the potential to improve project delivery around the world today. Every project’s success is largely determined by the availability of precise and detailed digital data. RC applications have pushed for more sustainable design, construction and operations in the built environment.

Originality/value

The study has given research trends on the extent of RC applications, potentials, limitations and future directions.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Book part
Publication date: 11 December 2023

Nil Sonuç and Seda Süer

The conceptualization of smart emerged by technological advancements penetrated the tourism industry with the pace of globalization transformed the destinations providing…

Abstract

The conceptualization of smart emerged by technological advancements penetrated the tourism industry with the pace of globalization transformed the destinations providing digitalized products. Even though smart tourism destinations are initiated by advanced technologies, the notion evolved in embracing Sustainable Development Goals (SDGs) project economic, social, and environmental proliferation. A tourism destination is counted as “smart” which provides advanced technologies to improve the quality of tourists' experiences and enhance the residents' quality of life. The structure of a smart tourism destination is established on four basic pillars that cover technology, innovation, accessibility, and sustainability issues. Designating the notion of smart into tourism destinations is extremely vital since the shifting paradigm of tourists’ demands concern sustainability. The development of smart in a tourism destination is a crucial concern for destination management organizations (DMOs) integrating key destination components with the dimensions of a smart city to enhance the tourists' satisfaction and competitiveness of the destination. Therefore, one aim of this chapter is to elucidate the association between key destination components with the dimensions of a smart city to reveal the related smart tourism destination applications. Moreover, cultural heritage in smart tourism destinations forms an important part of tourism both with its tangible and intangible resources which have been involved in the emergent era of digitalization inevitably with all parties and processes. Hence, another aim of this chapter is to examine the dimensional shift in cultural heritage tourism within the framework of digitalization. Sharing cases of digitization of cultural heritage from different parts of the world, this chapter also reflects that it is inevitable to benefit from digitization and ICTs in order to reach the SDGs on the scale of smart tourism destinations. Analysis of academic publications and the national and international reports of the related authorities sums the methodology used to conclude the study with suggestions of future research paths to develop the field.

Details

Smart Cities for Sustainability
Type: Book
ISBN: 978-1-80455-902-4

Keywords

Article
Publication date: 14 November 2022

Abdul Hannan Qureshi, Wesam Salah Alaloul, Wong Kai Wing, Syed Saad, Khalid Mhmoud Alzubi and Muhammad Ali Musarat

Rebar is the prime component of reinforced concrete structures, and rebar monitoring is a time-consuming and technical job. With the emergence of the fourth industrial revolution…

Abstract

Purpose

Rebar is the prime component of reinforced concrete structures, and rebar monitoring is a time-consuming and technical job. With the emergence of the fourth industrial revolution, the construction industry practices have evolved toward digitalization. Still, hesitation remains among stakeholders toward the adoption of advanced technologies and one of the significant reasons is the unavailability of knowledge frameworks and implementation guidelines. This study aims to investigate technical factors impacting automated monitoring of rebar for the understanding, confidence gain and effective implementation by construction industry stakeholders.

Design/methodology/approach

A structured study pipeline has been adopted, which includes a systematic literature collection, semistructured interviews, pilot survey, questionnaire survey and statistical analyses via merging two techniques, i.e. structural equation modeling and relative importance index.

Findings

The achieved model highlights “digital images” and “scanning” as two main categories being adopted for automated rebar monitoring. Moreover, “external influence”, “data-capturing”, “image quality”, and “environment” have been identified as the main factors under “digital images”. On the other hand, “object distance”, “rebar shape”, “occlusion” and “rebar spacing” have been highlighted as the main contributing factors under “scanning”.

Originality/value

The study provides a base guideline for the construction industry stakeholders to gain confidence in automated monitoring of rebar via vision-based technologies and effective implementation of the progress-monitoring processes. This study, via structured data collection, performed qualitative and quantitative analyses to investigate technical factors for effective rebar monitoring via vision-based technologies in the form of a mathematical model.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 313