Search results

1 – 10 of 695
Open Access
Article
Publication date: 30 April 2021

Sepehr Alizadehsalehi and Ibrahim Yitmen

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality…

8962

Abstract

Purpose

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality (RC-to-XR).

Design/methodology/approach

IDEF0 data modeling method has been designed to establish an integration of reality capturing technologies by using BIM, DTs and XR for automated construction progress monitoring. Structural equation modeling (SEM) method has been used to test the proposed hypotheses and develop the skill model to examine the reliability, validity and contribution of the framework to understand the DRX model's effectiveness if implemented in real practice.

Findings

The research findings validate the positive impact and importance of utilizing technology integration in a logical framework such as DRX, which provides trustable, real-time, transparent and digital construction progress monitoring.

Practical implications

DRX system captures accurate, real-time and comprehensive data at construction stage, analyses data and information precisely and quickly, visualizes information and reports in a real scale environment, facilitates information flows and communication, learns from itself, historical data and accessible online data to predict future actions, provides semantic and digitalize construction information with analytical capabilities and optimizes decision-making process.

Originality/value

The research presents a framework of an automated construction progress monitoring system that integrates BIM, various reality capturing technologies, DT and XR technologies (VR, AR and MR), arraying the steps on how these technologies work collaboratively to create, capture, generate, analyze, manage and visualize construction progress data, information and reports.

Details

Smart and Sustainable Built Environment, vol. 12 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 June 2020

Kobra Gharouni Jafari, Nozhat Sadat Ghazi Sharyatpanahi and Esmatullah Noorzai

Prompt and effective responses to incompatibilities between as-designed and as-built drawings prevent cost and time overruns and material waste. This paper aims to provide an…

Abstract

Purpose

Prompt and effective responses to incompatibilities between as-designed and as-built drawings prevent cost and time overruns and material waste. This paper aims to provide an efficient framework to handle mismatches between these two models with the least negative impact on the whole project.

Design/methodology/approach

First, 11 most frequent mismatches were identified through questionnaires. Also, the respondents were asked to determine the mismatches’ roots and solutions and the impact of applying solutions on the whole project. Afterward, the process to present the optimum solution to one of these mismatches was modeled. After running the application programming interface developed in Navisworks software, decision-makers access a form, showing mismatches, their causes and solutions, as well as the solutions’ effect. To finalize the optimal solution, a platform was provided on whether to accept the system solution or to propose an alternative.

Findings

To empirically validate the reliability of the proposed framework, two projects were investigated. Two different approaches to dealing with the same mismatch occurred in these projects were compared in terms of time, cost and material required. The results showed that addressing the mismatches through the proposed framework can efficiently enhance time, cost and material consumption, in comparison with the traditional approach.

Originality/value

There is currently no building information modeling-based holistic framework for managing mismatches between as-designed and as-built drawings. The results of this research can help contractors to make the best decision, saving project resources, when setting about a mismatch during construction.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 July 2015

Zaid Alwan and Barry J. Gledson

The purpose of this paper is to provide a unique conceptual framework for integrated asset management strategy that includes making use of available facility assessment methods…

1570

Abstract

Purpose

The purpose of this paper is to provide a unique conceptual framework for integrated asset management strategy that includes making use of available facility assessment methods and tools such as BREEAM In-Use, and Leadership in Energy and Environmental Design (LEED); and highlights proposes areas of commonality between these and the use of as-built Building Information Modelling, that ultimately becomes the Asset Information Model (AIM). This framework will consider the emerging requirements for the capture of Building Performance Attribute Data (BPAD), and how these can be managed in order to assist with effective post-construction building performance evaluation.

Design/methodology/approach

A review of the current process relevant to the development of as-built BIMs and AIMs was undertaken which included a discussion of BIM standards and of the COBie process. This was combined with data provided by industry practitioners. This led to the concept of BPADs being developed, to be used within existing green building tool, BREEAM In-Use, COBIE and FM/Asset management methods. In turn these methodologies were used to identify possible synergies and areas of integration in AIM-enabled environments.

Findings

Recognising the cyclical nature of asset management and BIM, a conceptual model was generated. It was found that BPADs could be aggregated within an AIM model which could influence the delivery of effective facilities and asset management. The model considers the use of existing Building Management Systems (BMS) and Computer Aided Facility Management Systems (CAFMs) and identifies issues associated with the overall sustainability strategy.

Originality/value

A conceptual framework is generated that proposes the use of effective information management and aggregation of BPAD within an AIM.

Details

Built Environment Project and Asset Management, vol. 5 no. 3
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 13 July 2015

Deniz Ilter and Esin Ergen

The purpose of this paper is to present a strategic overview of the current literature on “Building information modelling (BIM) for Building Refurbishment and Maintenance” to…

7869

Abstract

Purpose

The purpose of this paper is to present a strategic overview of the current literature on “Building information modelling (BIM) for Building Refurbishment and Maintenance” to unfold the factors behind the relative underdeveloped state of the field and to contribute to the development of a more cumulative knowledge base by presenting the current status and suggesting future directions for research.

Design/methodology/approach

A systematic review of the literature has been undertaken by classifying and mapping the literature, identifying the input-output relations, exhibiting the areas focused on by researchers as well as neglected ones and by indicating the trends in research through the years. Both qualitative and quantitative analysis is used in the study to better interpret the existing studies in a holistic perspective.

Findings

Although the need for BIM in facility management (FM) has been acknowledged by researchers and practitioners, the results highlight that studies related to BIM applications in maintenance and especially refurbishment are relatively recent. However, the trend in published articles shows that the interest is continuously growing. Existing research in this field can be clustered in the following subtopics: (1) building survey and as-built BIM, (2) modelling and managing energy, (3) design assessment, (4) access to and integration of maintenance information and knowledge, and (5) information exchange and interoperability.

Originality/value

The paper identifies the gaps in the research domain that hinders a widespread adoption of BIM in refurbishment and maintenance stages and introduces roadmaps to surmount the challenges identified in each specific subtopic of the field.

Details

Structural Survey, vol. 33 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 August 2019

Sandra Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell and Rana Matarneh

The purpose of this study is to address challenges in the current information exchange process between building information modelling (BIM) and facilities management (FM) systems…

1106

Abstract

Purpose

The purpose of this study is to address challenges in the current information exchange process between building information modelling (BIM) and facilities management (FM) systems and to propose a workable solution. This study’s objective is to identify the information exchange requirements and to develop methods for seamless information flow between building information models and FM systems.

Design/methodology/approach

Data collection and analysis was based on an extensive literature review of similar studies followed by a questionnaire survey with a total of 112 participants and 2 focus groups with a total of 12 participants to validate the conceptual framework. The outputs of the survey analysis formed the background of the proposed framework to streamline information exchange process between building information models and FM systems.

Findings

The study findings form a foundation for enabling the integration of various data sources including building information models. Such integrated platforms will enable automated information exchange between the various data sources and FM systems. The study also provides key information requirements sources to complement the existing construction operations building information exchange information and to support standardization for information exchange process.

Originality/value

The contribution of this study is the identification of information exchange requirements and sources to enable seamless information flow between BIM and FM systems. The study findings will also lay the basis for research studies using the developed framework context to enable the identification of specific data outputs for FM systems inputs.

Article
Publication date: 30 December 2019

Abdul Rahman Ahsan Usmani, Abdalrahman Elshafey, Masoud Gheisari, Changsaar Chai, Eeydzah Binti Aminudin and Cher Siang Tan

Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built

Abstract

Purpose

Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia.

Design/methodology/approach

A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling.

Findings

This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia.

Originality/value

Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 October 2022

Ahmed Gouda Mohamed and Amr Mousa

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building…

Abstract

Purpose

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building components while monitoring and consistently recording numerous components’ functions throughout its lifecycle, especially in Egypt. This research paper aims to develop an integrated as-is BIM-facility management (FM) information model for the existing building’s components via a case study, depicting a repository for historical data and knowledge amassed from inspections and conveying maintenance decisions automatically during the FM practices.

Design/methodology/approach

The developed approach pursues four successive steps: data acquisition and processing of building components; components recognition from point clouds; modelling scanned point clouds; and quick response code information transfer to BIM components.

Findings

The proposed approach incorporates the as-is BIM with the building components’ as-is FM information to portray a repository for historical data and knowledge collected from inspections to proactively benefit facility managers in simplifying, expediting and enhancing maintenance decisions automatically during FM practices.

Originality/value

This paper presents a digital alternative to manual maintenance recordkeeping concerning building components to retrieve their as-is and historical data using a case study in Egypt. This paper proposes a broad scan to as-is information BIM approach for the existing building’s components to condone maintenance interventions using a versatile, affordable, readily available and multi-functional method for scanning the building’s components using a handheld tool.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 22 March 2021

Ayman Ahmed Ezzat Othman and Fatma Othman Alamoudy

This paper aims to develop a framework for optimising building performance through the integration between risk management (RM) and building information modelling (BIM) during the…

Abstract

Purpose

This paper aims to develop a framework for optimising building performance through the integration between risk management (RM) and building information modelling (BIM) during the design process.

Design/methodology/approach

To achieve this aim, a research strategy consisting of literature review, case studies and survey questionnaire is designed to accomplish four objectives. First, to examine the concepts of design process, building performance, RM and BIM; second, to present three case studies to explain the role of using RM and BIM capabilities towards optimising building performance; third, to investigate the perception and application of architectural design firms in Egypt towards the role of RM and BIM for enhancing building performance during the design process; and finally, to develop a framework integrating RM and BIM during the design process as an approach for optimising building performance.

Findings

Through literature review, the research identified 18 risks that hamper optimising building performance during the design process. In addition, 11 building performance values and 20 BIM technologies were defined. Results of data analysis showed that “Design budget overrun”, “Lack of considering life cycle cost” and “Inefficient use of the design time” were ranked the highest risks that affect the optimisation of building performance. Respondents ranked “Risk avoid” or “Risk transfer” as the most risk responses adopted in the Egyptian context. In addition, “BIM As Built” was ranked the highest BIM technology used for overcoming risks during the design process. These findings necessitated taking action towards developing a framework to optimising building performance.

Originality/value

The research identified the risks that affect optimising building performance during the design process. It focuses on improving the design process through using the capabilities of BIM technologies towards overcoming these risks during the design process. The proposed framework which integrates RM and BIM represents a synthesis that is novel and creative in thought and adds value to the knowledge in a manner that has not previously occurred.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 October 2018

Ritu Ahuja, Anil Sawhney and Mohammed Arif

The purpose of this paper is to describe the process through which an organization develops organizational capabilities by tapping the technical skills and social skills of its…

1592

Abstract

Purpose

The purpose of this paper is to describe the process through which an organization develops organizational capabilities by tapping the technical skills and social skills of its employees in the use of Building Information Modeling (BIM) to deliver lean and green project outcomes. The resulting framework for BIM-based organizational capabilities development comprising of three hierarchical layers – technology, process and outcomes – is explained.

Design/methodology/approach

For this study, BIM has been identified as an enabler and a process for achieving lean and green outcomes on construction projects. Based on a detailed literature review, this paper identifies the organizational capabilities needed by the architecture, engineering and construction organizations to effectively implement BIM on construction projects. The study has been conducted through a sequential mixed-method approach involving semi-structured interviews, focus groups and qualitative comparative analyses.

Findings

It was discovered that to attain desired project outcomes, an organization needs to embrace an underlying BIM adoption culture not only within its project teams but also within the organization as a whole. The study also concluded that an integrated approach to BIM usage – connecting it with lean and green initiatives – on construction projects resulted in improved project outcomes, especially ones targeting lean and green aspects of improvements.

Practical implications

The proposed outline for BIM-based organizational capabilities will help the organizations focus on the “human factors” along with the technical factors while striving for successful usage within their organizations.

Originality/value

Using the organizational capabilities matrix, this paper highlights the importance of technical and social skill sets of an individual employee and their role in developing the organizational capabilities to gain the desired lean and green outcomes.

Details

Engineering, Construction and Architectural Management, vol. 25 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 695