Search results

1 – 10 of 187
Open Access
Article
Publication date: 9 April 2024

Krisztina Demeter, Levente Szász, Béla-Gergely Rácz and Lehel-Zoltán Györfy

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly…

Abstract

Purpose

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly, business performance. With the emergence of Industry 4.0 (I4.0) technologies, manufacturing companies can use a wide variety of advanced manufacturing technologies (AMT) to build an efficient and effective production system. Nevertheless, the literature offers little guidance on how these technologies, including novel I4.0 technologies, should be combined in practice and how these combinations might have a different impact on performance.

Design/methodology/approach

Using a survey study of 165 manufacturing plants from 11 different countries, we use factor analysis to empirically derive three distinct manufacturing technology bundles and structural equation modeling to quantify their relationship with operations and business performance.

Findings

Our findings support an evolutionary rather than a revolutionary perspective. I4.0 technologies build on traditional manufacturing technologies and do not constitute a separate direction that would point towards a fundamental digital transformation of companies within our sample. Performance effects are rather weak: out of the three technology bundles identified, only “automation and robotization” have a positive influence on cost efficiency, while “base technologies” and “data-enabled technologies” do not offer a competitive advantage, neither in terms of cost nor in terms of differentiation. Furthermore, while the business performance impact is positive, it is quite weak, suggesting that financial returns on technology investments might require longer time periods.

Originality/value

Relying on a complementarity approach, our research offers a novel perspective on technology implementation in the I4.0 era by investigating novel and traditional manufacturing technologies together.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 1 April 2024

Ying Miao, Yue Shi and Hao Jing

This study investigates the relationships among digital transformation, technological innovation, industry–university–research collaborations and labor income share in…

Abstract

Purpose

This study investigates the relationships among digital transformation, technological innovation, industry–university–research collaborations and labor income share in manufacturing firms.

Design/methodology/approach

The relationships are tested using an empirical method, constructing regression models, by collecting 1,240 manufacturing firms and 9,029 items listed on the A-share market in China from 2013 to 2020.

Findings

The results indicate that digital transformation has a positive effect on manufacturing companies’ labor income share. Technological innovation can mediate the effect of digital transformation on labor income share. Industry–university–research cooperation can positively moderate the promotion effect of digital transformation on labor income share but cannot moderate the mediating effect of technological innovation. Heterogeneity analysis also found that firms without service-based transformation and nonstate-owned firms are better able to increase their labor income share through digital transformation.

Originality/value

This study provides a new path to increase the labor income share of enterprises to achieve common prosperity, which is important for manufacturing enterprises to better transform and upgrade to achieve high-quality development.

Open Access
Article
Publication date: 18 May 2023

Anna Trubetskaya, Alan Ryan and Frank Murphy

This paper aims to introduce a model using a digital twin concept in a cold heading manufacturing and develop a digital visual management (VM) system using Lean overall equipment…

4946

Abstract

Purpose

This paper aims to introduce a model using a digital twin concept in a cold heading manufacturing and develop a digital visual management (VM) system using Lean overall equipment effectiveness (OEE) tool to enhance the process performance and establish Fourth Industrial Revolution (I4.0) platform in small and medium enterprises (SMEs).

Design/methodology/approach

This work utilised plan, do, check, act Lean methodology to create a digital twin of each machine in a smart manufacturing facility by taking the Lean tool OEE and digitally transforming it in the context of I4.0. To demonstrate the effectiveness of process digitisation, a case study was carried out at a manufacturing department to provide the data to the model and later validate synergy between Lean and I4.0 platform.

Findings

The OEE parameter can be increased by 10% using a proposed digital twin model with the introduction of a Level 0 into VM platform to clearly define the purpose of each data point gathered further replicate in projects across the value stream.

Research limitations/implications

The findings suggest that researchers should look beyond conversion of stored data into visualisations and predictive analytics to improve the model connectivity. The development of strong big data analytics capabilities in SMEs can be achieved by shortening the time between data gathering and impact on the model performance.

Originality/value

The novelty of this study is the application of OEE Lean tool in the smart manufacturing sector to allow SME organisations to introduce digitalisation on the back of structured and streamlined principles with well-defined end goals to reach the optimal OEE.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 February 2023

Azemeraw Tadesse Mengistu and Roberto Panizzolo

This paper aims to identify and empirically analyze useful and applicable metrics for measuring and managing the sustainability performance of small and medium-sized enterprises…

2921

Abstract

Purpose

This paper aims to identify and empirically analyze useful and applicable metrics for measuring and managing the sustainability performance of small and medium-sized enterprises (SMEs).

Design/methodology/approach

To achieve the objective of the paper, potential metrics were adopted from previous research related to industrial sustainability and an empirical analysis was carried to assess the applicability of the metrics by collecting empirical data from Italian footwear SMEs using a structured questionnaire. The SMEs were selected using a convenience sampling method.

Findings

The results of the within-case analysis and the cross-case analysis indicate that the majority of the metrics were found to be useful and applicable to each of the SMEs and across the SMEs, respectively. These metrics emphasized measuring industrial sustainability performance related to financial benefits, costs and market competitiveness for the economic sustainability dimension; resources for the environmental sustainability dimension; and customers, employees and the community for the social sustainability dimension.

Research limitations/implications

Apart from the within-case analysis and cross-case analysis, it was not possible to conduct statistical analysis since a small number of SMEs were accessible to collect empirical data.

Originality/value

The findings of the paper have considerable academic, managerial and policy implications and will provide a theoretical basis for future research on measuring and managing industrial sustainability performance. By providing a set of empirically supported metrics based on the triple bottom line approach (i.e. economic, environmental and social metrics), this paper contributes to the existing knowledge in the field of industrial sustainability performance measurement.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 16 April 2024

Michael Rachinger and Julian M. Müller

Business Model Innovation is increasingly created by an ecosystem of related companies. This paper aims to investigate the transition of a manufacturing ecosystem toward electric…

Abstract

Purpose

Business Model Innovation is increasingly created by an ecosystem of related companies. This paper aims to investigate the transition of a manufacturing ecosystem toward electric vehicles from a business model perspective.

Design/methodology/approach

The authors investigate an automotive manufacturing ecosystem that is in transition toward electric and electrified vehicles, conducting semi-structured interviews with 46 informants from 27 ecosystem members.

Findings

The results reveal that the actions of several ecosystem members are driven by regulations relating to emissions. Novel requirements regarding components and complementary offers necessitate the entry of actors from other industries and the formation of new ecosystem members. While the newly emerged ecosystem has roots in an established ecosystem, it relies on new value offers. Further, the findings highlight the importance of ecosystem governance, while the necessary degree of change in the members' business models depends on their roles and positions in the ecosystem. Therefore, upstream suppliers of components must perform business model adaptation, whereas downstream providers must perform more complex business model innovation.

Originality/value

The paper is among the first to investigate an entire manufacturing ecosystem and analyze its transition toward electric vehicles and the implications for business model innovation.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Content available

Abstract

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Open Access
Article
Publication date: 12 May 2023

Olivia McDermott, Kevin ODwyer, John Noonan, Anna Trubetskaya and Angelo Rosa

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to…

79327

Abstract

Purpose

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to design, modularise and manufacture various building elements in a controlled factory environment off-site.

Design/methodology/approach

A case study in a construction company utilised lean six sigma (LSS) methodology and BIM to identify non-value add waste in the construction process and improve sustainability.

Findings

An Irish-based construction company manufacturing modular pipe racks for the pharmaceutical industry utilised LSS to optimise and standardise their off-site manufacturing (OSM) partners process and leverage BIM to design skids which could be manufactured offsite and transported easily with minimal on-site installation and rework required. Productivity was improved, waste was reduced, less energy was consumed, defects were reduced and the project schedule for completion was reduced.

Research limitations/implications

The case study was carried out on one construction company and one construction product type. Further case studies would ensure more generalisability. However, the implementation was tested on a modular construction company, and the methods used indicate that the generic framework could be applied and customized to any offsite company.

Originality/value

This is one of the few studies on implementing offsite manufacturing (OSM) utilising LSS and BIM in an Irish construction company. The detailed quantitative benefits and cost savings calculations presented as well as the use of the LSM methods and BIM in designing an OSM process can be leveraged by other construction organisations to understand the benefits of OSM. This study can help demonstrate how LSS and BIM can aid the construction industry to be more environmentally friendly.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 28 November 2022

Elena Stefana, Paola Cocca, Federico Fantori, Filippo Marciano and Alessandro Marini

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

1543

Abstract

Purpose

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

Design/methodology/approach

The authors conducted a literature review about the studies focusing on approaches combining OEE with monetary units and/or resource issues. The authors developed an approach based on Overall Equipment Cost Loss (OECL), introducing a component for the production resource consumption of a machine. A real case study about a smart multicenter three-spindle machine is used to test the applicability of the approach.

Findings

The paper proposes Resource Overall Equipment Cost Loss (ROECL), i.e. a new KPI expressed in monetary units that represents the total cost of losses (including production resource ones) caused by inefficiencies and deviations of the machine or equipment from its optimal operating status occurring over a specific time period. ROECL enables to quantify the variation of the product cost occurring when a machine or equipment changes its health status and to determine the actual product cost for a given production order. In the analysed case study, the most critical production orders showed an actual production cost about 60% higher than the minimal cost possible under the most efficient operating conditions.

Originality/value

The proposed approach may support both production and cost accounting managers during the identification of areas requiring attention and representing opportunities for improvement in terms of availability, performance, quality, and resource losses.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Access

Only content I have access to

Year

Last week (187)

Content type

1 – 10 of 187