Search results

1 – 10 of 157
Article
Publication date: 2 March 2023

Walid E. Elgammal, Essam M. Eliwa, Hosni A. Goomaa, Medhat E. Owda and H. Abd El-Wahab

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating…

Abstract

Purpose

This paper aims to focus on the synthesis of the macrocyclic complexes (Cu and Zn) and their applications as anticorrosive materials in epoxy paint formulation for surface coating application.

Design/methodology/approach

A selected macrocyclic Cu(II) and Zn(II) complexes were prepared via template synthesis and characterized using Fourier transform infrared, thermal gravimetric analysis, scanning electron microscope, flexibility, hardness and adhesion of coating films prepared using epoxy paint.

Findings

The corrosion resistance of the epoxy-painted films was improved due to the incorporation of the Zn and Cu complexes into the formulation.

Originality/value

It was found that the metal complex-based formulation with Cu(II) and Zn(II) had outperformed the sample blank.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 May 2022

Fatimah De'nan and Nor Salwani Hashim

The purpose of this work is to perform the finite element analysis (FEA) for the numerical discretization of sections with different arrangements of Web openings to investigate…

Abstract

Purpose

The purpose of this work is to perform the finite element analysis (FEA) for the numerical discretization of sections with different arrangements of Web openings to investigate the torsion behavior. Typical hexagonal and circular Web opening sections are extensively used in steel construction due to economic development in building design. However, the use of sections with different arrangements of Web opening had improved the performance of the section with Web opening in terms of structural behavior which leads to economic design compared to typical I-beam.

Design/methodology/approach

The accuracy of FE results allows extensive numerical analysis of stress concentration magnitude for sections with Web openings, concentrating on the sizes and positions of the Web opening. Five shapes and three sizes of Web opening are used in this work. The shapes involved are c-hexagon, hexagon, octagon, circular and square, whereas the sizes of the Web opening involved are 0.67 D, 0.75 D and 0.80 D where D is the height of the Web. Two types of models for 200 × 100 × 8×6 mm steel section involved which is Model 1, where the section with 50 mm edge and 150 mm center-to-center distance and Model 2, where the section with 100 mm edge and 200 mm center-to-center distance.

Findings

It was found that these configurations affect the section with various shapes of Web openings sizes (0.67 D, 0.75 D, and 0.80 D). This also includes the spacing distances, with 50 mm edge and 150 mm center-to-center distance and also a section with 100 mm edge and 200 mm center-to-center distance. Through the FEA results of Model 1 and Model 2, it is found that 50% reduction in horizontal member length in hexagon Web opening, from 50 mm to 20 mm, caused increment about 30%–53% stress concentration in Web for c-hexagon. However, for a stress analysis of c-hexagon, geometry resulted in a lower stress concentration in the Web than other Web opening.

Originality/value

Additionally, the work emphasized the efficiency of Web opening shapes by using an appropriate Web opening radius in section with c-hexagon, hexagon, octagon, square and circular shapes. The final results show the contribution of appropriate Web opening radius to increase the section torsional capacity. It is observed that the torsional capacity at certain loading condition and its angle of twist is analysed.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 July 2024

Rishi Parvanda and Prateek Kala

Three-dimensional (3D) casting means using additive manufacturing (AM) techniques to print the mould for casting the cast tool. The printed mould, however, should be checked for…

Abstract

Purpose

Three-dimensional (3D) casting means using additive manufacturing (AM) techniques to print the mould for casting the cast tool. The printed mould, however, should be checked for its dimensional accuracy. 3D scanning can be used for the same. The purpose of this study is to combine the different AM techniques for 3D casting with 3D scanning to produce parts with close tolerance for preparing electrical discharge machining (EDM) electrodes.

Design/methodology/approach

The four processes, namely, stereolithography, selective laser sintering, fused deposition modelling and vacuum casting, are used to print the casting mould. The mould is designed in two halves, assembled to form a complete mould. The mould is 3D scanned in two stages: before and after using it as a casting mould. The mould's average and maximum dimensional deviations are calculated using 3D-scanned results. The eutectic Sn-Bi alloy is cast in the mould. The surface roughness of the mould and the cast tool are measured.

Findings

The cast tool is selected from the four processes in terms of dimensional accuracy and surface finish. The same is electroplated with copper. The microstructure of the cast tool (low-melting-point alloy) and deposited copper is analysed using a scanning electron microscope. Energy dispersive spectroscopy and X-ray diffraction techniques are used to verify the composition of the cast and coated alloy. The electroplated tool is finally tested on the EDM setup. The material removal rate and tool wear are measured. The performance is compared with a solid copper tool. The free-form customised EDM mould is also prepared, and the profile is cast out. The same is tested on the EDM. Thus, the developed path can be successfully used for rapid tooling applications.

Originality/value

The eutectic composition of Sn-Bi is cast in the 3D-printed mould using different AM techniques combined with 3D scanning quality to check its feasibility as an EDM electrode, which is a novel work and has not been done previously.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2023

Nor Salwani Hashim and Fatimah De’nan

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads…

Abstract

Purpose

It is generally known that the perforated section such as the castellated section is good to sustain distributed loads but inadequate to sustain highly concentrated loads. Therefore, it is possible to design the opening in a different arrangement of web opening to achieve section efficiency, thus improving the strength and torsional behaviour of the section with web opening. This study aims to focus on the finite element analysis of I-beam with and without openings in steel section dominated to lateral-torsional buckling behaviour.

Design/methodology/approach

In this work, the analysis of different sizes, shapes and arrangements of web opening is performed by using LUSAS application to conduct numerical analysis on lateral-torsional buckling behaviour. This involves three diameter sizes of web opening, five types of opening shapes and two criteria of the model.

Findings

The section with c-hexagon web opening was placed about 200-mm centre to centre and 100-mm edge distance, contribute to 7.26% increase of buckling capacity. For the section with 150-mm centre to centre and 50-mm edge distance, the occurrence of local buckling contributes to decrease of lateral buckling section capacity to 19.943 kNm, where pure lateral-torsional buckling mostly occurred because of prevented section. Besides that, the web opening diameter was also analysed. The web crippling was observed because of the increase of opening diameter from 0.67 to 0.80 D.

Originality/value

This contributes to a decrease in buckling capacity as figured in the contour of the deformed shape. For Model 1, an increase of buckling capacity (31.46%) is observed when the opening diameter are changed from 0.67 to 0.80 D.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2023

Nor Salwani Hashim and Fatimah De'nan

Castellated and cellular beams achieved the same strength as solid I-beams with the same depth, resulting in significantly lighter and more economical structures. The purpose of…

Abstract

Purpose

Castellated and cellular beams achieved the same strength as solid I-beams with the same depth, resulting in significantly lighter and more economical structures. The purpose of this study is to analyse the bending behaviour of I-beam steel sections with certain web openings by finite element analysis.

Design/methodology/approach

The accuracy of finite element results allows extensive numerical analysis of sections with web openings, concentrating on the web opening sizes and web opening positions. These assumptions can increase the induced section load with various shapes of web opening depth and web opening shapes of c-hexagon, hexagon, octagon, circular and square. This also includes spacing distances, with a 50-mm edge and 150-mm centre-to-centre distance and a section with a 100-mm edge and 200-mm centre-to-centre distance. Generally, the adjustment of the opening geometry (by reducing the angle of web pitch or reducing the opening depth depending on analysed parameters) may influence the bending behaviour.

Findings

Additionally, Model 2 was found to be the optimum model compared to Model 1, mainly in terms of bending. Moreover, the I-beam with a c-hexagon shape opening exhibited the lowest displacement compared to other sections with other web opening shapes. Section with a different arrangement of web opening, Type E shows the lower displacement while higher displacement is observed for Type A and also higher displacement considered for Type G. The optimum model is associated with Type E, followed by Type D, compared to other types of certain web opening and I-beam.

Originality/value

The use of sections with different arrangements of web opening improved the performance of the perforated section in terms of structural behaviour, compared to typical I-beam, thus leading to economic design.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 October 2023

Minakshi Koundal, Ajay Kumar Singh and Chhaya Sharma

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Abstract

Purpose

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Design/methodology/approach

The mild steel 1010 coupon was considered for the current study. Weight loss and the electrochemical methods were used to evaluate the inhibitory effects of neodymium chloride (NdCl3) and NdTar on mild steel in NaCl solution. Scanning electron microscopy, energy-dispersive X-ray analysis and attenuated total reflectance-Fourier transform infrared spectroscopy measurements were carried out to study the morphology and composition of the film, nature of deposits and corrosion products formed in test media on the corroded steel, with the objective of further analyzing the observed behavior of the two inhibitors.

Findings

Of the two, NdTar performs better than NdCl3 because it shields mild steel surfaces for longer. According to the results, when NdCl3 is present in a corrosive solution, the protective film only comprises Nd/Fe oxide/hydroxide/carbonate. However, when neodymium is coupled with the tartrate group (an organic group) and then added to the NaCl solution, the inhibitor film comprises both bimetallic complexes (Fe-Tar-Nd) and metal oxide/hydroxide/carbonate, which results in a more compact film and has higher inhibition efficiency.

Originality/value

This study evaluated the combined effects of inorganic and organic inhibitors with those of an inorganic inhibitor used alone for mild steel in NaCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 September 2024

Pranay Vaggu and S.K. Panigrahi

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Abstract

Purpose

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Design/methodology/approach

Projectile shape is one of the important parameters in the penetration mechanism. The present study deals with the failure mechanisms and ballistic evaluation for different nose-shaped projectiles undergoing normal impact with spinning. Materials characterization has been made by Johnson–Cook strength and failure models, and LS-DYNA simulations are used to analyse the impact of steel projectiles on an Al 7075-T651 target at different impact velocities under normal impact conditions. The experimental results from the literature are used to validate the model. Based on the residual velocity values, the Recht-Ipson model has been curve-fitted and approximate ballistic limit velocity has been evaluated. The approximated ballistic limit velocity is found to be 3.4% higher than the experimental results and compared well with the experimental results. Subsequently, the validated model conditions are used to study and analyse the effect of spinning for different nose-shaped projectiles undergoing normal impact conditions.

Findings

The ductile hole failure is observed for the ogive nose projectile, petals are formed and fragmented for the conical projectile, and plugging is observed for cylindrical projectiles. A Recht-Ipson curve is presented for each spinning condition for each projectile shape and the ballistic limit has been evaluated for each condition.

Originality/value

The proposed research outputs are original and innovative and, have a lot of importance in defence applications, particularly in arms and ammunition.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 2023

Veysi Ökten, Reşit Yıldız and Gökmen Sığırcık

This study aims to prevent mild steel (MS) against corrosion in 0.5 M HCl solution, 2-amino-4-methoxy-6-methyl-1,3,5-triazine was used. The effectiveness of the compound as a…

Abstract

Purpose

This study aims to prevent mild steel (MS) against corrosion in 0.5 M HCl solution, 2-amino-4-methoxy-6-methyl-1,3,5-triazine was used. The effectiveness of the compound as a corrosion inhibitor was studied via electrochemical, surface and theoretical calculation techniques.

Design/methodology/approach

For concentrations ranging from 0.5 to 10.0 mM, almost similar polarization resistances were obtained from electrochemical impedance spectroscopy (EIS) and linear polarization resistance tests. It also investigated inhibitive activity of 2-amino-4-methoxy-6-methyl-1,3,5-triazine on the steel surface using scanning electron and atomic force microscope instruments. Langmuir adsorption is the best matched isotherm for the adsorption of the inhibitor to the steel surface.

Findings

EIS method was used to determine inhibition efficiency, which was determined to be 95.7% for 10.0 mM inhibitor containing acid solution. Density functional theory’s predictions for quantum chemistry agreed well with the other experimental results.

Originality/value

The methods used in this study are effective and applicable; the used organic inhibitor is 2-amino-4-methoxy-6-methyl-1,3,5-triazine; and protective effectiveness is important, which is crucial for the task of MS corrosion prevention.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 February 2024

Akhil Khajuria, Anurag Misra and S. Shiva

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active…

Abstract

Purpose

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.

Design/methodology/approach

Mechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.

Findings

0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).

Originality/value

A substantial improvement in YS (∼9%), %elongation (∼38%), and room temperature impact toughness (∼29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost ∼10, ∼12.5, and ∼16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstätten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 157