Search results

1 – 10 of 147
Article
Publication date: 15 November 2011

S. Bausson, V. Thomas, P.‐Y. Joubert, L. Blanc‐Féraud, J. Darbon and G. Aubert

The inverse problem in the eddy current (EC) imaging of metallic parts is an ill‐posed problem. The purpose of the paper is to compare the performances of regularized algorithms…

Abstract

Purpose

The inverse problem in the eddy current (EC) imaging of metallic parts is an ill‐posed problem. The purpose of the paper is to compare the performances of regularized algorithms to estimate the 3D geometry of a surface breaking defect.

Design/methodology/approach

The forward problem is solved using a mesh‐free semi‐analytical model, the distributed point source method, which allows EC data to be simulated according to the shape of the considered defect. The inverse problem is solved using two regularization methods, namely the Tikhonov (l2) and the 3D total variation (tv) methods, implemented with first‐ and second‐order algorithms. The inversion performances were evaluated in terms of both mean square error (MSE) and computation time, while considering additive white and colored noise, respectively, standing for acquisition errors and model errors.

Findings

In presence of colored noise, the authors found out that first‐ and second‐order methods provide approximately the same result according to the SEs obtained while estimating the defect voxels. Nevertheless, in comparison with (l2), the (tv) regularization was proved to decrease the MSE by 10 voxels, at the cost of less than twice the computational effort.

Originality/value

In this paper, an easy to implement mesh‐free model, based on virtual defect current sources, was used to generated EC data relative to a defect positioned at the surface of a metallic part. A 3D total variation regularization approach was used in combination with the proposed model, which appears to be well suited to the reconstruction of volumic defects.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 October 2010

Nikos D. Lagaros, Vagelis Plevris and Manolis Papadrakakis

This paper, by taking randomness and uncertainty of structural systems into account aims to implement a combined reliability‐based robust design optimization (RRDO) formulation…

Abstract

Purpose

This paper, by taking randomness and uncertainty of structural systems into account aims to implement a combined reliability‐based robust design optimization (RRDO) formulation. The random variables to be considered include the cross section dimensions, modulus of elasticity, yield stress, and applied loading. The RRDO problem is to be formulated as a multi‐objective optimization problem where the construction cost and the standard deviation of the structural response are the objectives to be minimized.

Design/methodology/approach

The solution of the optimization problem is performed with the non‐dominant cascade evolutionary algorithm with the weighted Tchebycheff metric, while the probabilistic analysis required is carried out with the Monte Carlo simulation method. Despite the computational advances, the solution of a RRDO problem for real‐world structures is extremely computationally demanding and for this reason neurocomputing estimations are implemented.

Findings

The obtained estimates with the neural network predictions are shown to be very satisfactory in terms of accuracy for performing this type of computation. Furthermore, the present numerical results manage to achieve a reduction in computational time up to four orders of magnitude, for low probabilities of violation, compared to the conventional procedure making thus feasible the reliability‐robust design optimization of realistic structures under probabilistic constraints.

Originality/value

The novel parts of the present work include the implementation of neurocomputing strategies in RRDO problems for reducing the computational cost and the comparison of the results given by RRDO and robust design optimization formulations, where the significance of taking into account probabilistic constraints is emphasized.

Details

Engineering Computations, vol. 27 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 August 2022

Fran Sérgio Lobato, Gustavo Barbosa Libotte and Gustavo Mendes Platt

In this work, the multi-objective optimization shuffled complex evolution is proposed. The algorithm is based on the extension of shuffled complex evolution, by incorporating two…

Abstract

Purpose

In this work, the multi-objective optimization shuffled complex evolution is proposed. The algorithm is based on the extension of shuffled complex evolution, by incorporating two classical operators into the original algorithm: the rank ordering and crowding distance. In order to accelerate the convergence process, a Local Search strategy based on the generation of potential candidates by using Latin Hypercube method is also proposed.

Design/methodology/approach

The multi-objective optimization shuffled complex evolution is used to accelerate the convergence process and to reduce the number of objective function evaluations.

Findings

In general, the proposed methodology was able to solve a classical mechanical engineering problem with different characteristics. From a statistical point of view, we demonstrated that differences may exist between the proposed methodology and other evolutionary strategies concerning two different metrics (convergence and diversity), for a class of benchmark functions (ZDT functions).

Originality/value

The development of a new numerical method to solve multi-objective optimization problems is the major contribution.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 January 2021

Felix Blank

Refugee camps can be severely struck by pandemics, like potential COVID-19 outbreaks, due to high population densities and often only base-level medical infrastructure. Fast…

Abstract

Purpose

Refugee camps can be severely struck by pandemics, like potential COVID-19 outbreaks, due to high population densities and often only base-level medical infrastructure. Fast responding medical systems can help to avoid spikes in infections and death rates as they allow the prompt isolation and treatment of patients. At the same time, the normal demand for emergency medical services has to be dealt with as well. The overall goal of this study is the design of an emergency service system that is appropriate for both types of demand.

Design/methodology/approach

A spatial hypercube queuing model (HQM) is developed that uses queuing-theory methods to determine locations for emergency medical vehicles (also called servers). Therefore, a general optimization approach is applied, and subsequently, virus outbreaks at various locations of the study areas are simulated to analyze and evaluate the solution proposed. The derived performance metrics offer insights into the behavior of the proposed emergency service system during pandemic outbreaks. The Za'atari refugee camp in Jordan is used as a case study.

Findings

The derived locations of the emergency medical system (EMS) can handle all non-virus-related emergency demands. If additional demand due to virus outbreaks is considered, the system becomes largely congested. The HQM shows that the actual congestion is highly dependent on the overall amount of outbreaks and the corresponding case numbers per outbreak. Multiple outbreaks are much harder to handle even if their cumulative average case number is lower than for one singular outbreak. Additional servers can mitigate the described effects and lead to enhanced resilience in the case of virus outbreaks and better values in all considered performance metrics.

Research limitations/implications

Some parameters that were assumed for simplification purposes as well as the overall model should be verified in future studies with the relevant designers of EMSs in refugee camps. Moreover, from a practitioners perspective, the application of the model requires, at least some, training and knowledge in the overall field of optimization and queuing theory.

Practical implications

The model can be applied to different data sets, e.g. refugee camps or temporary shelters. The optimization model, as well as the subsequent simulation, can be used collectively or independently. It can support decision-makers in the general location decision as well as for the simulation of stress-tests, like virus outbreaks in the camp area.

Originality/value

The study addresses the research gap in an optimization-based design of emergency service systems for refugee camps. The queuing theory-based approach allows the calculation of precise (expected) performance metrics for both the optimization process and the subsequent analysis of the system. Applied to pandemic outbreaks, it allows for the simulation of the behavior of the system during stress-tests and adds a further tool for designing resilient emergency service systems.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 11 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 16 April 2018

Naser Safaeian Hamzehkolaei, Mahmoud Miri and Mohsen Rashki

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and…

Abstract

Purpose

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and discrete variables. The gradient-based RBDO algorithms are less than satisfactory for these cases. The simulation-based approaches could also be computationally inefficient, especially when the double-loop strategy is used. This paper aims to present a pseudo-double loop flexible RBDO, which is efficient for solving problems, including both discrete/continuous variables.

Design/methodology/approach

The method is based on the hybrid improved binary bat algorithm (BBA) and weighed simulation method (WSM). According to this method, each BBA’s movement generates proper candidate solutions, and subsequently, WSM evaluates the reliability levels for design candidates to conduct swarm in a low-cost safe-region.

Findings

The accuracy of the proposed enhanced BBA and also the hybrid WSM-BBA are examined for ten benchmark deterministic optimizations and also four RBDO problems of truss structures, respectively. The solved examples reveal computational efficiency and superiority of the method to conventional RBDO approaches for solving complex problems including discrete variables.

Originality/value

Unlike other RBDO approaches, the proposed method is such organized that only one simulation run suffices during the optimization process. The flexibility future of the proposed RBDO framework enables a designer to present multi-level design solutions for different arrangements of the problem by using the results of the only one simulation for WSM, which is very helpful to decrease computational burden of the RBDO. In addition, a new suitable transfer function that enhanced convergence rate and search ability of the original BBA is introduced.

Article
Publication date: 14 March 2019

Hailiang Su, Fengchong Lan, Yuyan He and Jiqing Chen

Meta-model method has been widely used in structural reliability optimization design. The main limitation of this method is that it is difficult to quantify the error caused by…

Abstract

Purpose

Meta-model method has been widely used in structural reliability optimization design. The main limitation of this method is that it is difficult to quantify the error caused by the meta-model approximation, which leads to the inaccuracy of the optimization results of the reliability evaluation. Taking the local high efficiency of the proxy model, this paper aims to propose a local effective constrained response surface method (LEC-RSM) based on a meta-model.

Design/methodology/approach

The operating mechanisms of LEC-RSM is to calculate the index of the local relative importance based on numerical theory and capture the most effective area in the entire design space, as well as selecting important analysis domains for sample changes. To improve the efficiency of the algorithm, the constrained efficient set algorithm (ESA) is introduced, in which the sample point validity is identified based on the reliability information obtained in the previous cycle and then the boundary sampling points that violate the constraint conditions are ignored or eliminated.

Findings

The computational power of the proposed method is demonstrated by solving two mathematical problems and the actual engineering optimization problem of a car collision. LEC-RSM makes it easier to achieve the optimal performance, less feature evaluation and fewer algorithm iterations.

Originality/value

This paper proposes a new RSM technology based on proxy model to complete the reliability design. The originality of this paper is to increase the sampling points by identifying the local importance of the analysis domain and introduce the constrained ESA to improve the efficiency of the algorithm.

Article
Publication date: 21 September 2018

Mohsen Sadeghi-Dastaki and Abbas Afrazeh

Human resources are one of the most important and effective elements for companies. In other words, employees are a competitive advantage. This issue is more vital in the supply…

Abstract

Purpose

Human resources are one of the most important and effective elements for companies. In other words, employees are a competitive advantage. This issue is more vital in the supply chains and production systems, because of high need for manpower in the different specification. Therefore, manpower planning is an important, essential and complex task. The purpose of this paper is to present a manpower planning model for production departments. The authors consider workforce with individual and hierarchical skills with skill substitution in the planning. Assuming workforce demand as a factor of uncertainty, a two-stage stochastic model is proposed.

Design/methodology/approach

To solve the proposed mixed-integer model in the real-world cases and large-scale problems, a Benders’ decomposition algorithm is introduced. Some test instances are solved, with scenarios generated by Monte Carlo method. For some test instances, to find the number of suitable scenarios, the authors use the sample average approximation method and to generate scenarios, the authors use Latin hypercube sampling method.

Findings

The results show a reasonable performance in terms of both quality and solution time. Finally, the paper concludes with some analysis of the results and suggestions for further research.

Originality/value

Researchers have attracted to other uncertainty factors such as costs and products demand in the literature, and have little attention to workforce demand as an uncertainty factor. Furthermore, most of the time, researchers assume that there is no difference between the education level and skill, while they are not necessarily equivalent. Hence, this paper enters these elements into decision making.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 April 2022

Haopeng Lou, Zhibin Xiao, Yinyuan Wan, Fengling Jin, Boqing Gao and Chao Li

In this article, a practical design methodology is proposed for discrete sizing optimization of high-rise concrete buildings with a focus on large-scale and real-life structures.

Abstract

Purpose

In this article, a practical design methodology is proposed for discrete sizing optimization of high-rise concrete buildings with a focus on large-scale and real-life structures.

Design/methodology/approach

This framework relies on a computationally efficient approximation of the constraint and objective functions using a radial basis function model with a linear tail, also called the combined response surface methodology (RSM) in this article. Considering both the code-stipulated constraints and other construction requirements, three sub-optimization problems were constructed based on the relaxation model of the original problem, and then the structural weight could be automatically minimized under multiple constraints and loading scenarios. After modulization, the obtained results could meet the discretization requirements. By integrating the commercially available ETABS, a dedicated optimization software program with an independent interface was developed and details for practical software development were also presented in this paper.

Findings

The proposed framework was used to optimize different high-rise concrete buildings, and case studies showed that material usage could be saved by up to 12.8% compared to the conventional design, and the over-limit constraints could be adjusted, which proved the feasibility and effectiveness.

Originality/value

This methodology can therefore be applied by engineers to explore the optimal distribution of dimensions for high-rise buildings and to reduce material usage for a more sustainable design.

Article
Publication date: 5 March 2018

Xiwen Cai, Haobo Qiu, Liang Gao, Xiaoke Li and Xinyu Shao

This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization.

Abstract

Purpose

This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization.

Design/methodology/approach

The method has fully utilized the information provided by different metamodels in the optimization process. It not only imparts the expected improvement criterion of kriging into other metamodels but also intelligently selects appropriate metamodeling techniques to guide the search direction, thus making the search process very efficient. Besides, the corresponding local search strategies are also put forward to further improve the optimizing efficiency.

Findings

To validate the method, it is tested by several numerical benchmark problems and applied in two engineering design optimization problems. Moreover, an overall comparison between the proposed method and several other typical global optimization methods has been made. Results show that the global optimization efficiency of the proposed method is higher than that of the other methods for most situations.

Originality/value

The proposed method sufficiently utilizes multiple metamodels in the optimizing process. Thus, good optimizing results are obtained, showing great applicability in engineering design optimization problems which involve costly simulations.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 July 2014

M.Q. Chau, X. Han, C. Jiang, Y.C. Bai, T.N. Tran and V.H. Truong

The performance measure approach (PMA) is widely adopted for reliability analysis and reliability-based design optimization because of its robustness and efficiency compared to…

Abstract

Purpose

The performance measure approach (PMA) is widely adopted for reliability analysis and reliability-based design optimization because of its robustness and efficiency compared to reliability index approach. However, it has been reported that PMA involves repeat evaluations of probabilistic constraints therefore it is prohibitively expensive for many large-scale applications. In order to overcome these disadvantages, the purpose of this paper is to propose an efficient PMA-based reliability analysis technique using radial basis function (RBF).

Design/methodology/approach

The RBF is adopted to approximate the implicit limit state functions in combination with latin hypercube sampling (LHS) strategy. The advanced mean value method is applied to obtain the most probable point (MPP) with the prescribed target reliability and corresponding probabilistic performance measure to improve analysis accuracy. A sequential framework is proposed to relocate the sampling center to the obtained MPP and reconstruct RBF until a criteria is satisfied.

Findings

The method is shown to be better in the computation time to the PMA based on the actual model. The analysis results of probabilistic performance measure are accurately close to the reference solution. Five numerical examples are presented to demonstrate the effectiveness of the proposed method.

Originality/value

The main contribution of this paper is to propose a new reliability analysis technique using reconstructed RBF approximate model. The originalities of this paper may lie in: investigating the PMA using metamodel techniques, using RBF instead of the other types of metamodels to deal with the low efficiency problem.

Details

Engineering Computations, vol. 31 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 147