Search results

1 – 10 of 318
Article
Publication date: 18 August 2022

Fran Sérgio Lobato, Gustavo Barbosa Libotte and Gustavo Mendes Platt

In this work, the multi-objective optimization shuffled complex evolution is proposed. The algorithm is based on the extension of shuffled complex evolution, by incorporating two…

Abstract

Purpose

In this work, the multi-objective optimization shuffled complex evolution is proposed. The algorithm is based on the extension of shuffled complex evolution, by incorporating two classical operators into the original algorithm: the rank ordering and crowding distance. In order to accelerate the convergence process, a Local Search strategy based on the generation of potential candidates by using Latin Hypercube method is also proposed.

Design/methodology/approach

The multi-objective optimization shuffled complex evolution is used to accelerate the convergence process and to reduce the number of objective function evaluations.

Findings

In general, the proposed methodology was able to solve a classical mechanical engineering problem with different characteristics. From a statistical point of view, we demonstrated that differences may exist between the proposed methodology and other evolutionary strategies concerning two different metrics (convergence and diversity), for a class of benchmark functions (ZDT functions).

Originality/value

The development of a new numerical method to solve multi-objective optimization problems is the major contribution.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 3 August 2020

Rajashree Dash, Rasmita Rautray and Rasmita Dash

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its…

1187

Abstract

Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of researchers for solving diversified problem domains. Due to its distinguishing features such as generalization ability, robustness and strong ability to tackle nonlinear problems, it appears to be more popular in financial time series modeling and prediction. In this paper, a Pi-Sigma Neural Network is designed for foretelling the future currency exchange rates in different prediction horizon. The unrevealed parameters of the network are interpreted by a hybrid learning algorithm termed as Shuffled Differential Evolution (SDE). The main motivation of this study is to integrate the partitioning and random shuffling scheme of Shuffled Frog Leaping algorithm with evolutionary steps of a Differential Evolution technique to obtain an optimal solution with an accelerated convergence rate. The efficiency of the proposed predictor model is actualized by predicting the exchange rate price of a US dollar against Swiss France (CHF) and Japanese Yen (JPY) accumulated within the same period of time.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 29 March 2011

Huangzhong Pu, Ziyang Zhen and Daobo Wang

Attitude control of unmanned aerial vehicle (UAV) is the purposeful manipulation of controllable external forces to establish a desired attitude, which is inner‐loop of the…

Abstract

Purpose

Attitude control of unmanned aerial vehicle (UAV) is the purposeful manipulation of controllable external forces to establish a desired attitude, which is inner‐loop of the autonomous flight control system. In the practical applications, classical control methods such as proportional‐integral‐derivative control are usually selected because of simple and high reliability. However, it is usually difficult to select or optimize the control parameters. The purpose of this paper is to investigate an intelligent algorithm based classical controller of UAV.

Design/methodology/approach

Among the many intelligent algorithms, shuffled frog leaping algorithm (SFLA) combines the benefits of the genetic‐based memetic algorithm as well as social behavior based particle swarm optimization. SFLA is a population based meta‐heuristic intelligent optimization method inspired by natural memetics. In order to improve the performance of SFLA, a different dividing method of the memeplexes is presented to make their performance balance; moreover, an evolution mechanism of the best frog is introduced to make the algorithm jump out the local optimum. The modified SFLA is applied to the tuning of the proportional coefficients of pitching and rolling channels of UAV flight control system.

Findings

Simulation of a UAV control system in which the nonlinear model is obtained by the wind tunnel experiment show the rapid dynamic response and high control precision by using the modified SFLA optimized attitude controller, which is better than that of the original SFLA and particle swarm optimization method.

Originality/value

A modification scheme is presented to improve the global searching capability of SFLA. The modified SFLA based intelligent determination method of the UAV flight controller parameters is proposed, in order to improve the attitude control performance of UAV.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 4 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 March 2020

Ali Kaveh and Ataollah Zaerreza

This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm.

Abstract

Purpose

This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm.

Design/methodology/approach

The agents are first separated into multi-communities and the optimization process is then performed mimicking the behavior of a shepherd in nature operating on each community.

Findings

A new multi-community meta-heuristic optimization algorithm called a shuffled shepherd optimization algorithm is developed in this paper and applied to some attractive examples.

Originality/value

A new metaheuristic is presented and tested with some classic benchmark problems and some attractive structures are optimized.

Article
Publication date: 7 April 2015

Ashraf Elazouni, Anas Alghazi and Shokri Z. Selim

The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete…

Abstract

Purpose

The purpose of this paper is to compare the performance of the genetic algorithm (GA), simulate annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving discrete versus continuous-variable optimization problems of the finance-based scheduling. This involves the minimization of the project duration and consequently the time-related cost components of construction contractors including overheads, finance costs and delay penalties.

Design/methodology/approach

The meta-heuristics of the GA, SA and SFLA have been implemented to solve non-deterministic polynomial-time hard (NP-hard) finance-based scheduling problem employing the objective of minimizing the project duration. The traditional problem of generating unfeasible solutions in scheduling problems is adequately tackled in the implementations of the meta-heuristics in this paper.

Findings

The obtained results indicated that the SA outperformed the SFLA and GA in terms of the quality of solutions as well as the computational cost based on the small-size networks of 30 activities, whereas it exhibited the least total duration based on the large-size networks of 120 and 210 activities after prolonged processing time.

Research limitations/implications

From researchers’ perspective, finance-based scheduling is one of the few domain problems which can be formulated as discrete and continuous-variable optimization problems and, thus, can be used by researchers as a test bed to give more insight into the performance of new developments of meta-heuristics in solving discrete and continuous-variable optimization problems.

Practical implications

Finance-based scheduling discrete-variable optimization problem is of high relevance to the practitioners, as it allows schedulers to devise finance-feasible schedules of minimum duration. The minimization of project duration is focal for the minimization of time-related cost components of construction contractors including overheads, finance costs and delay penalties. Moreover, planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction through the expedient delivery of the completed project for clients to start reaping the anticipated benefits.

Social implications

Planning for the expedient project completion is a major time-management aspect of construction contractors towards the achievement of the objective of client satisfaction.

Originality/value

SFLA represents a relatively recent meta-heuristic that proved to be promising, based on its limited number of applications in the literature. This paper is to implement SFLA to solve the discrete-variable optimization problem of the finance-based scheduling and assess its performance by comparing its results against those of the GA and SA.

Details

Journal of Financial Management of Property and Construction, vol. 20 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 26 June 2020

Hesam Adarang, Ali Bozorgi-Amiri, Kaveh Khalili-Damghani and Reza Tavakkoli-Moghaddam

This paper addresses a location-routing problem (LRP) under uncertainty for providing emergency medical services (EMS) during disasters, which is formulated using a robust…

Abstract

Purpose

This paper addresses a location-routing problem (LRP) under uncertainty for providing emergency medical services (EMS) during disasters, which is formulated using a robust optimization (RO) approach. The objectives consist of minimizing relief time and the total cost including location costs and the cost of route coverage by the vehicles (ambulances and helicopters).

Design/methodology/approach

A shuffled frog leaping algorithm (SFLA) is developed to solve the problem and the performance is assessed using both the ε-constraint method and NSGA-II algorithm. For a more accurate validation of the proposed algorithm, the four indicators of dispersion measure (DM), mean ideal distance (MID), space measure (SM), and the number of Pareto solutions (NPS) are used.

Findings

The results obtained indicate the efficiency of the proposed algorithm within a proper computation time compared to the CPLEX solver as an exact method.

Research limitations/implications

In this study, the planning horizon is not considered in the model which can affect the value of parameters such as demand. Moreover, the uncertain nature of the other parameters such as traveling time is not incorporated into the model.

Practical implications

The outcomes of this research are helpful for decision-makers for the planning and management of casualty transportation under uncertain environment. The proposed algorithm can obtain acceptable solutions for real-world cases.

Originality/value

A novel robust mixed-integer linear programming (MILP) model is proposed to formulate the problem as a LRP. To solve the problem, two efficient metaheuristic algorithms were developed to determine the optimal values of objectives and decision variables.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 10 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 18 April 2017

Yanjie Wang, Zhengchao Xie, InChio Lou, Wai Kin Ung and Kai Meng Mok

The purpose of this paper is to examine the applicability and capability of models based on a genetic algorithm and support vector machine (GA-SVM) and a genetic algorithm and…

Abstract

Purpose

The purpose of this paper is to examine the applicability and capability of models based on a genetic algorithm and support vector machine (GA-SVM) and a genetic algorithm and relevance vector machine (GA-RVM) for the prediction of phytoplankton abundances associated with algal blooms in a Macau freshwater reservoir, and compare their performances with an artificial neural network (ANN) model.

Design/methodology/approach

The hybrid models GA-SVM and GA-RVM were developed for the optimal control of parameters for predicting (based on the current month’s variables) and forecasting (based on the previous three months’ variables) phytoplankton dynamics in a Macau freshwater reservoir, MSR, which has experienced cyanobacterial blooms in recent years. There were 15 environmental parameters, including pH, SiO2, alkalinity, bicarbonate (HCO3−), dissolved oxygen (DO), total nitrogen (TN), UV254, turbidity, conductivity, nitrate (NO3−), orthophosphate (PO43−), total phosphorus (TP), suspended solids (SS) and total organic carbon (TOC) selected from the correlation analysis, with eight years (2001-2008) of data for training, and the most recent three years (2009-2011) for testing.

Findings

For both accuracy performance and generalized performance, the ANN, GA-SVM and GA-RVM had similar predictive powers of R2 of 0.73-0.75. However, whereas ANN and GA-RVM models showed very similar forecast performances, GA-SVM models had better forecast performances of R2 (0.862), RMSE (0.266) and MAE (0.0710) with the respective parameters of 0.987, 0.161 and 0.032 optimized using GA.

Originality/value

This is the first application of GA-SVM and GA-RVM models for predicting and forecasting algal bloom in freshwater reservoirs. GA-SVM was shown to be an effective new way for monitoring algal bloom problem in water resources.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 June 2020

Hadi Kashefi, Ahmad Sadegheih, Ali Mostafaeipour and Mohammad Mohammadpour Omran

To design, control and evaluate photovoltaic (PV) systems, an accurate model is required. Accuracy of PV models depends on model parameters. This study aims to use a new algorithm…

Abstract

Purpose

To design, control and evaluate photovoltaic (PV) systems, an accurate model is required. Accuracy of PV models depends on model parameters. This study aims to use a new algorithm called improved social spider algorithm (ISSA) to detect model parameters.

Design/methodology/approach

To improve performance of social spider algorithm (SSA), an elimination period is added. In addition, at the beginning of each period, a certain number of the worst solutions are replaced by new solutions in the search space. This allows the particles to find new paths to get the best solution.

Findings

In this paper, ISSA is used to estimate parameters of single-diode and double-diode models. In addition, effect of irradiation and temperature on I–V curves of PV modules is studied. For this purpose, two different modules called multi-crystalline (KC200GT) module and polycrystalline (SW255) are used. It should be noted that to challenge the performance of the proposed algorithm, it has been used to identify the parameters of a type of widely used module of fuel cell called proton exchange membrane fuel cell. Finally, comparing and analyzing of ISSA results with other similar methods shows the superiority of the presented method.

Originality/value

Changes in the spider’s movement process in the SSA toward the desired response have improved the algorithm’s performance. Higher accuracy and convergence rate, skipping local minimums, global search ability and search in a limited space can be mentioned as some advantages of this modified method compared to classic SSA.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 July 2009

Harrie‐Jan Hendricks Franssen

The purpose of this paper is to indicate the limitations of the studies that address the impact of climate change on groundwater resources and to suggest an improved approach.

1283

Abstract

Purpose

The purpose of this paper is to indicate the limitations of the studies that address the impact of climate change on groundwater resources and to suggest an improved approach.

Design/methodology/approach

A general review, both from a groundwater hydrological and a climatological viewpoint, is given, oriented on the impact of climate change on groundwater resources.

Findings

The impact of climate change on groundwater resources is not the subject of many studies in the scientific literature. Only rarely sophisticated downscaling techniques are applied to downscale estimated global circulation model (GCM) future precipitation series for a point or region of interest. Often it is not taken into account that different climate models calculate considerably different precipitation amounts (conceptual uncertainty). The joint downscaling of the meteorological variables that govern potential evapotranspiration (ET) is never done in the context of a study that assessed the impact of climate change on groundwater resources. It is desirable that actual ET is calculated in (groundwater) hydrological models on a physical basis, i.e. by coupling the energy and water balance at the Earth's surface.

Originality/value

This review signalises a number of problems with published studies on the impact of climate change on groundwater resources. In many studies the method to downscale meteorological variables from a climate model to a hydrological model is not adequate. ET is often calculated in a strongly simplified manner and not all hydrological processes are modelled in a fully coupled fashion. More sophisticated downscaling approaches, physically based schemes to calculate ET and well‐calibrated, integrative hydrological models are needed.

Details

International Journal of Climate Change Strategies and Management, vol. 1 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 318