Search results

1 – 6 of 6
Article
Publication date: 16 April 2018

Naser Safaeian Hamzehkolaei, Mahmoud Miri and Mohsen Rashki

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and…

Abstract

Purpose

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and discrete variables. The gradient-based RBDO algorithms are less than satisfactory for these cases. The simulation-based approaches could also be computationally inefficient, especially when the double-loop strategy is used. This paper aims to present a pseudo-double loop flexible RBDO, which is efficient for solving problems, including both discrete/continuous variables.

Design/methodology/approach

The method is based on the hybrid improved binary bat algorithm (BBA) and weighed simulation method (WSM). According to this method, each BBA’s movement generates proper candidate solutions, and subsequently, WSM evaluates the reliability levels for design candidates to conduct swarm in a low-cost safe-region.

Findings

The accuracy of the proposed enhanced BBA and also the hybrid WSM-BBA are examined for ten benchmark deterministic optimizations and also four RBDO problems of truss structures, respectively. The solved examples reveal computational efficiency and superiority of the method to conventional RBDO approaches for solving complex problems including discrete variables.

Originality/value

Unlike other RBDO approaches, the proposed method is such organized that only one simulation run suffices during the optimization process. The flexibility future of the proposed RBDO framework enables a designer to present multi-level design solutions for different arrangements of the problem by using the results of the only one simulation for WSM, which is very helpful to decrease computational burden of the RBDO. In addition, a new suitable transfer function that enhanced convergence rate and search ability of the original BBA is introduced.

Article
Publication date: 27 June 2020

Fuli Zhou, Panpan Ma, Yandong He, Saurabh Pratap, Peng Yu and Biyu Yang

With an increasingly fierce competition of the shipbuilding industry, advanced technologies and excellent management philosophies in the manufacturing industry are gradually…

Abstract

Purpose

With an increasingly fierce competition of the shipbuilding industry, advanced technologies and excellent management philosophies in the manufacturing industry are gradually introduced to domestic shipyards. The purpose of this study is to promote the lean management of Chinese ship outfitting plants by lean production strategy.

Design/methodology/approach

To promote the lean implementation of Chinese shipyards, the lean practice of ship-pipe part production is highlighted by lot-sizing optimization and strategic CONWIP (constant work-in-process) control. A nonlinear programming model is formulated to minimize the total cost of ship-pipe part manufacturing and the particle swarm optimization (PSO)-based algorithm is designed to resolve the established model. Besides, the pull-from-the-bottleneck (PFB) strategy is used to control ship-pipe part production, verified by Simulink simulation.

Findings

Results show that the proposed lean strategy of the programming model and strategic PFB control could assist Chinese ship outfitting plants to leverage competitive advantage by waste reduction and lean achievement. Specifically, the PFB double-loop control strategy shows better performance when there is high productivity and the PFB single-loop control outperforms at lower productivity scenarios.

Practical implications

To verify the effectiveness of the proposed lean strategy, a case study is performed to validate the formulated model. Also, simulation experiments realized by FlexSim software are conducted to testify results obtained by the constructed programming model.

Originality/value

Lean production management practice of the shipyard building industry is performed by the proposed lean production strategy through lot-sizing optimization and strategic PFB control in terms of ship-pipe part manufacturing.

Details

Kybernetes, vol. 50 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 March 2013

Enzhan Zhang and Yujun Kuang

The purpose of this paper is to introduce a weighted average method to process speed measurements from multiple magnetic sensors, which are installed on road segments. Speeds are…

Abstract

Purpose

The purpose of this paper is to introduce a weighted average method to process speed measurements from multiple magnetic sensors, which are installed on road segments. Speeds are weighted‐averaged in a fix duration time (5 minutes) for each sensor across location index of the sensor where it was installed. The proposed method is evaluated with numeric and simulation results.

Design/methodology/approach

Unlike traditional vehicle average speed measurements, the authors propose a weighted‐average speed measurement method of road segment, using wireless magnetic sensor nodes, which are installed on the measured road segment. Magnetic sensors offer a non‐contact vehicle detection method, and small sensors with relatively low power consumption. Using magnetic sensors, the local changes in the Earth's magnetic field caused by the presence of a moving vehicle can be measured and the vehicle's speed obtained. Next, using adaptive weighted average algorithm and space weighted algorithm in a fixed period, the weighted average travel speed of road segment can be obtained.

Findings

In current literature, there are many methods to measure vehicles' speed on road, such as image‐based, radar‐based, GPS‐based, double‐loop‐based or magnetic sensor‐based, but most of them only provide individual vehicle speed. Using probe vehicles, mean travel speed of road segment can be obtained, but it is costly on hardware and measurement, because many probe‐vehicles need to be used on roads and many measurements need to be done everyday. GPS data can be used to provide valuable travel speed data for Intelligent Transportation System (ITS). However, not every vehicle is equipped with GPS and to access ID numbers for personal cars would entail privacy problems. Mean travel speed of road segment is obtained based on statistical average speed. Generally, statistical average speed is used, which is based upon Gaussian distribution is not true in traffic systems.

Originality/value

By using wireless magnetic sensor nodes, vehicle instantaneous speeds are obtained in a fixed time when vehicles are passing over sensor nodes and then the adaptive weighted average speed on each sensor node location is computed based on the monitoring data from each sensor node in the fixed time. Considering different weights of each lane and road space (in the middle of the road segment or near the intersection), the proposed scheme can obtain the weighted‐average speed of the road segment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 October 2018

Yongquan Zhou, Ying Ling and Qifang Luo

This paper aims to represent an improved whale optimization algorithm (WOA) based on a Lévy flight trajectory and called the LWOA algorithm to solve engineering optimization…

Abstract

Purpose

This paper aims to represent an improved whale optimization algorithm (WOA) based on a Lévy flight trajectory and called the LWOA algorithm to solve engineering optimization problems. The LWOA makes the WOA faster, more robust and significantly enhances the WOA. In the LWOA, the Lévy flight trajectory enhances the capability of jumping out of the local optima and is helpful for smoothly balancing exploration and exploitation of the WOA. It has been successfully applied to five standard engineering optimization problems. The simulation results of the classical engineering design problems and real application exhibit the superiority of the LWOA algorithm in solving challenging problems with constrained and unknown search spaces when compared to the basic WOA algorithm or other available solutions.

Design/methodology/approach

In this paper, an improved WOA based on a Lévy flight trajectory and called the LWOA algorithm is represented to solve engineering optimization problems.

Findings

It has been successfully applied to five standard engineering optimization problems. The simulation results of the classical engineering design problems and real application exhibit the superiority of the LWOA algorithm in solving challenging problems with constrained and unknown search spaces when compared to the basic WOA algorithm or other available solutions.

Originality value

An improved WOA based on a Lévy flight trajectory and called the LWOA algorithm is first proposed.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2018

Jinglai Wu, Zhen Luo, Nong Zhang and Wei Gao

This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of…

Abstract

Purpose

This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of modelling, a new sequential sampling method termed as sequential Chebyshev sampling method (SCSM) is proposed in this study.

Design/methodology/approach

The high-order polynomials are used to construct the global surrogated model, which retains the advantages of the traditional low-order polynomial models while overcoming their disadvantage in accuracy. First, the zeros of Chebyshev polynomials with the highest allowable order will be used as sampling candidates to improve the stability and accuracy of the high-order polynomial model. In the second step, some initial sampling points will be selected from the candidates by using a coordinate alternation algorithm, which keeps the initial sampling set uniformly distributed. Third, a fast sequential sampling scheme based on the space-filling principle is developed to collect more samples from the candidates, and the order of polynomial model is also updated in this procedure. The final surrogate model will be determined as the polynomial that has the largest adjusted R-square after the sequential sampling is terminated.

Findings

The SCSM has better performance in efficiency, accuracy and stability compared with several popular sequential sampling methods, e.g. LOLA-Voronoi algorithm and global Monte Carlo method from the SED toolbox, and the Halton sequence.

Originality/value

The SCSM has good performance in building the high-order surrogate model, including the high stability and accuracy, which may save a large amount of cost in solving complicated engineering design or optimisation problems.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 September 2023

Prabhakaran Koothu Kesavan, Umashankar Subramaniam and Dhafer Jaber Almakhles

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet…

Abstract

Purpose

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet synchronous motor (PMSM) to improve the transient response of the system.

Design/methodology/approach

Proportional integral (PI) plus PI controller and the proposed PDF plus PDFF controller are designed, stability analysis is performed using the extended root locus method, and the effect of the damping coefficient is also extensively studied to validate the robustness of the proposed controller.

Findings

When compared to a cascaded PI plus PI controller, the proposed control approach has a much shorter settling time for the entire system and a 50% reduction in overshoot in stator current under extensive variations in speed with load disturbance.

Originality/value

The proposed controller is programmed into an FPGA Altera Cyclone II and applied to a 1.5 kW laboratory prototype PMSM drive. The effectiveness of the proposed methods has been demonstrated experimentally throughout a wide variable speed range, from 0 to 157 rad/s at different load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 6 of 6